
Bayesian Decoding of Substitution Cipher

Paul Zhou

Department of Applied Mathematics, Brown University, Providence, RI, 02192

Abstract

This paper discusses a Bayesian decoding method of substitution cipher.
Maximum Likelihood method is used to match the frequency of symbols in
the encoded text to that of natural English, and the maximization problem
is solved by a Markov Chain Monte Carlo algorithm.

Keywords: Substitution Cipher Decoding, Markov Chain Monte Carlo,
Maximum Likelihood, Metropolis Algorithm

1. Introduction

Substitution Cipher is a text encryption method that encodes plain text
by swapping each symbol by another symbol, transforming the original plain-
text into ciphertext. It is a relatively simple method of encrypting intelligible
text into unintelligible text, and has been in use for hundreds of years [1].
Some of these encoded messages carry important information, so it is impor-
tant to have a reliable Mathematical method of solving these ciphers.

An interesting and reliable approach was first proposed by Marc Coram
and Phil Beineke in the Stanford statistical consulting service [2], and later
investigated with more detail by Stephen Conner [3]. Coram proposed break-
ing the substitution cipher with frequency analysis – figuring out the frequen-
cies each individual letter and each pairs of letters occur in natural English
language. He then used the frequencies as a basis for a Markov Chain Monte
Carlo (MCMC) [4] algorithm that successfully found the substitution code
that corresponds best to these frequencies.

In this paper, I will follow the foot steps of Coram and recreate his decod-
ing algorithm. I will model the natural English language as a Markov Chain
and perform Bayesian inference on the substitution code with the maximum
likelihood method, and solve the maximization problem using MCMC. The

March 2, 2022

rest of the paper is organized as follows: First (Section 2), I will formulate
the substitution cipher problem in precise Mathematical language and intro-
duce related background knowledge for solving it. Then, in Section 3, I will
lay out the decoding algorithm in detailed steps. Finally, I will use the algo-
rithm to break three substitution ciphers in practice and discuss the results
(Sections 4 and 5)

2. Problem Setup and Background

In this section, I will formulate the decoding problem and introduce back-
ground knowledge on Bayesian inference and MCMC.

2.1. Scrambling and Decoding

Given a piece of text, we can encrypt it with substitution cipher by scram-
bling it. I consider the English language to be a sequence of 27 distinct sym-
bols: 26 characters a − z and (space character). Let S = {a, b, c, ..., z, }
be the set of these 27 unit characters. A substitution cipher is a one-to-one
function

σ : S → S, σ ∈ S27

where S27 denotes the space of all permutations for a set of size 27. A sub-
stitution cipher σ is essentially a permutation of the 27 legal characters,
where each character in the plaintext (the original intelligible text) has a
one-to-one mapping with a character in the ciphertext (the encoded unin-
telligible text). As a result, I will use the expressions “permutation” and
“substitution cipher” interchangeably. Given plaintext sequence a1a2...an,
substitution cipher σ will encoded it into an equal-length sequence b1b2...bn
where bi = σ(ai).

The decoding problem is: given a sequence of ciphertext b1b2...bn, how do
we find the correct cipher key (permutation) σ∗ to map it back to plaintext
a1a2...an = σ−1

∗ (b1)σ
−1
∗ (b2)...σ

−1
∗ (bn).

2.2. Digram Model of the English Language

In order to formalize the decoding problem, we have to model the English
language precisely. For decoding purposes, I take the simplifying assumption
that language is just a sequence of discrete symbols. Following Shannon’s
work [5], I assume that language is a stationary stochastic process with
state space S = {a, b, c, ..., z, } and it can be approximated by a Markov

2

Chain. I will refer to language that satisfies these two assumptions as true
language. For simplicity, I assume a digram model of English: the occurrence
of each symbol is determined only by the previous symbol according to some
probability distribution. This comes from the Markov assumption of true
language. More precisely,

P (at|a1a2...at−1) = P (at|at−1) t = 1, 2, 3, ...

In other worlds, we consider the English language to be consisting of tuples
of symbols, and the latter symbol is determined by the former according to
some transition distribution. These transition probabilities are encoded by
a square transition matrix Q, where Q(x, y) is the probability symbol x will
transition into symbol y in a language sequence. Therefore, each row of the
transition matrix Q is a probability distribution:{∑

y Q(x, y) = 1, ∀x ∈ S

Q(x, y) ≥ 0, ∀x, y ∈ S

The starting character in a language sequence, a1, is drawn according
to some one-point probability distribution Pone : S → R. This is the one-
point distribution that encodes how often each symbol occurs in the natural
English language.

Following this digram model, we can model the English language as:

P (a1a2a3...an) = P (a1) · P (a2|a1) · P (a3|a1a2) · P (a4|a1a2a3)
· · · P (an|a1a2...an−1)

= P (a1) · P (a2|a1) · P (a3|a2) · P (a4|a3) · · · P (an|an−1)

= Pone(a1) ·Q(a1, a2) ·Q(a2, a3) · · ·Q(an−1, an)

(1)

2.3. Bayesian Inference

Given the ciphertext b1b2...bn, I find the most likely substitution cipher
by performing Bayesian inference on σ. There are typically three steps in a
Bayesian inference process:

1. making a probabilistic model of the prior : in the case of decoding, I
have to model the true language a1a2...an as well as the permutation
σ. The prior is P (a1a2...an, σ)

2. express the posterior P (σ|a1a2...an) using Bayes Rule.
3. maximum likelihood approach: find the σ that maximizes the posterior.

A more detailed approach of these steps is presented in Section 3.

3

2.4. MCMC and the Metropolis Algorithm

Finding the σ∗ that maximizes the posterior is a hard maximization prob-
lem, because σ belongs to a huge state space S27. Naively iterating over all
σ to find the maximum is computationally intractable. Therefore, I resort
to solving the problem probabilistically using Markov Chain Monte Carlo
(MCMC) methods.

MCMC is a family of algorithms for sampling from a probability distri-
bution. It performs the sampling by constructing a Markov Chain that has
the desired probability distribution as the equilibrium distribution, and so
samples of that distribution can be obtained by simply recording states from
the Markov Chain. Here, I use MCMC as a way of sampling the distribution
of the permutation σ.

Specifically, I use the Metropolis algorithm [6] for sampling. The algo-
rithm assumes a state space Sm, an energy function E : Sm → R, and an
inverse temperature hyperparameter β. The state space Sm is constructed
into a graph G and the algorithm performs a biased walk on G:

Algorithm 1: Metropolis Algorithm

Input: E, β, Sm, number of total steps T , start node x1 ∈ G
Output: Markov chain x1, x2, ..., xT

1 record current node as a state in the resulting Markov Chain
2 steps taken += 1
3 use an unbiased random walk to choose a neighbor y
4 accept/reject rule:

(I) If ∆E = E(y)− E(x) < 0, then move current node from x to y.

(II) If ∆E ≥ 0, accept the move from x to y with probability e−β∆E, or
else stay at x.

Repeat Steps 1 to 4, until steps taken > T

This algorithm will output a Markov chain {Xt} = {x1, x2, ..., xT} which
will eventually converge to the true hidden permutation σ∗. The reasons for
this convergence will be explained in Section 3. In the end, σ∗ is the answer
to the decoding problem.

4

3. Computational Methods

First, I will use the Bayesian inference process to find the likelihood func-
tion of permutation σ; then, I will solve the maximum likelihood problem
using the Metropolis algorithm.

In order the compute the prior, we must model true language a1a2...an
and the distribution of the permutations σ.

Following Equation 1, I model true language using a digram model:

Ptrue(a1a2...an) = Pone(a1) ·Q(a1, a2) ·Q(a2, a3) · · ·Q(an−1an)

where Pone is the one-point distribution and Q is the transition matrix (Sec-
tion 2). Although we don’t have access to the true Pone and Q, we can ap-
proximate it with data. Given a text corpus of natural English {pi}i=1,2,...,N

consisting of symbols in S = {a, b, c, ...z, }, we can computePone(x) =
∑N

i=1 1(pi=x)

N

Q(x, y) =
∑N−1

i=1 1(pi=x,pi+1=y)∑N−1
i=1 1(pi=x)

(2)

for all x, y ∈ S, where 1(·) is the identity function.
Next, I will model the distribution of the permutation σ as a uniform

distribution on S27:

P (σ = σi) =
1

27!
, ∀σi ∈ S27.

This is the natural design choice given we don’t have any information on the
apriori distribution of σ. Moreover, this distribution is independent of the
digram language model.

As a result, the prior will be:

P (a1a2...an, σ) = Ptrue(a1a2...an) · P (σ)

= Ptrue(a1a2...an) ·
1

27!

= Pone(a1)Q(a1, a2)Q(a2, a3) · · ·Q(an−1, an) ·
1

27!

(3)

5

The posterior is:

P (σ|b1b2...bn) =
P (b1b2...bn, σ)

P (b1b2...bn)

=
P (b1b2...bn|σ) · P (σ)

P (b1b2...bn)

=
Ptrue(σ

−1(b1)σ
−1(b2)...σ

−1(bn)) · 1
27!

P (b1b2...bn)

= Ptrue(σ
−1(b1)σ

−1(b2)...σ
−1(bn)) ·

1/27!

P (b1b2...bn)

= Pone(σ
−1(b1)) ·Q(σ−1(b1), σ

−1(b2)) · ··

Q(σ−1(bn−1), σ
−1(bn)) ·

1/27!

P (b1b2...bn)

∝ Pone(σ
−1(b1)) ·Q(σ−1(b1), σ

−1(b2)) · ··
Q(σ−1(bn−1), σ

−1(bn))

(4)

This gives the likelihood function

L(σ) = Pone(σ
−1(b1)) ·Q(σ−1(b1), σ

−1(b2)) · · ·Q(σ−1(bn−1), σ
−1(bn)) (5)

The Maximum Likelihood approach suggests that the correct answer is the
one that maximizes the posterior/likelihood:

σ∗ = argmax
σ

P (σ|b1b2...bn)

= argmax
σ

L(σ)

= argmax
σ

logL(σ)

= argmin
σ

− logL(σ)

= argmin
σ

− log(Pone(σ
−1(b1)) ·Q(σ−1(b1), σ

−1(b2)) · ··

Q(σ−1(bn−1), σ
−1(bn)))

= argmin
σ

− logPone(σ
−1(b1))− logQ(σ−1(b1), σ

−1(b2))−

...− logQ(σ−1(bn−1), σ
−1(bn))

(6)

I will do solve this minimization problem with the Metropolis algorithm.
First, define a graph G = (V,E) on the space of permutations S27. Each

6

node will be one permutation (V = S27) and two nodes σi, σj are connected
by an edge if σi, σj differ only by the swapping of one pair of symbols (e.g.
abcd...z → z...dcba and abcd...z → z...dcab differ only by swapping a and
b).

Further define energy function for the permutations

E(σ) = − logL(σ). (7)

Minimizing this energy will equivalently solve the maximum likelihood prob-
lem (Equation 6). The Metropolis algorithm (algorithm 1) provides a way of
doing a walk over the graph such that eventually will converge to staying at
low energy nodes (notice how step 4 encourages movement towards low en-
ergy nodes). The convergence lowest-energy node σ∗ is the permutation that
maximizes the likelihood, and therefore represents the hidden substitution
cipher.

Using the cipher code σ∗, we can easily decode the ciphertext b1b2...bn:

a1a2...an = σ−1
∗ (b1)σ

−1
∗ (b2)...σ

−1
∗ (bn)

4. Experiments

I test the decoding method described above using three pieces of encoded
texts, all of which are included in Appendix B. All experiments are carried
out in Python, and and code is attached in Appendix C.

To compute the prior distribution of the true language, I used the book of
Pride and Prejudice by Jane Austin [7] as a text corpus for natural English
language. The text is converted to all lowercase letters and filtered to only
contain symbols in our defined state space S = {a, b, ..., z, }. Then Equa-
tion 2 is used to data-mine the one-point distribution and transition matrix
of the symbols. When encountering a transition x → y with Q(x, y) = 0, I
set Q(x, y) = 10−16 to prevent numerical issues when taking the logarithm
in Equation 7.

For implementing the Metropolis algorithm, the energy is defined as in
Equations 7 and 5. The state space is the space of all permutations S27,
and the inverse temperature parameter is taken to be β = 1. The algorithm
starts at an initial “identity” permutation σ1 : abc...z → abc...z and takes
a total of T = 100, 000 steps.

7

5. Results and Discussion

5.1. Decoding Results

Using my implementation of the decoding method discussed above, I have
obtained the decoded messages for all three encryption. Excerpts of the
decoded messages are presented below, and the full-length decoded messages
are included in Appendix A. The results show that this Bayesian method
with MCMC can break substitution ciphers with minimal computing power
and time.

For code f 45.txt, the plaintext is an excerpt from Chapter 5 of Feynman
Lectures On Computation [8]:

i would now like to take a look at a subject which is extremely inter-
esting but almost entirely academic in nature this is the subject of the
energetics of computing we want to address the question how much
energy must be used in carrying out a computation

...

this is actually what we mean by isothermal compression we do the
compression slowly ensuring that at all times the gas and the sur-
rounding bath are in thermal equilibrium

For code h 45.txt, the plaintext is an excerpt from Chapter 1 of Harry
Potter and the Sorcerer’s Stone:

mr and mrs dursley of number four privet drive were proud to say that
they were perfectly normal thank you very much they were the last
people youd expect to be involved in anything strange or mysterious
because they just didnt hold with such nonsense

...

mr dursley however had a perfectly normal owl free morning he yelled
at five different people he made several important telephone

For code j 45.txt, the plaintext is an excerpt from Chapter 1 of Finnegans
Wake by James Joyce:

riverrun past eve and adams from swerve of shore to bend of bay brings
us by a commodius vicus of recirculation back to howth castle and
environs sir tristram violer damores frover the short sea had passencore

8

rearrived from north armorica on this side the scraggy isthmus of
europe minor to wielderfight his penisolate war

...

mister finn youre going to be mister finnagain comeday morm and o
youre vine senddays eve and ah youre vinegar hahahaha mister funn
youre going to be fined again

The three substitution cipher keys are presented in Table 1.

5.2. Visualization of the Digram Language Model

The digram model of English is completely determined by Pone and Q,
both of which are obtained by data mining and visualized in Figure 1. The
figures show that letter ‘e’ and the space symbol occur very frequently in
natural English, and the other symbols often transition into these two char-
acters. This corresponds with one’s common sense about English: ‘e’ is a
common vowel and space occurs very frequently because English words are
almost all shorter than 27 letters. Other popular symbols include ‘a’, ‘n’,
and ‘i’. This approximate distribution of the symbols is also corroborated
by Li and Miramontes [9] and New and Grainger [10].

Figure 1: Left: visualization of the one-point distribution Pone. Right: visualization of
the transition matrix Q of the 27 symbols

Even though the digram model is very simple and is almost definitely not
powerful enough to model real English, experiments have proven that it is
sufficient for decoding substitution ciphers.

9

permutation / cipher key
plaintext f code h code j code
a b x
b w v c
c r p b
d o k l
e g c s
f y y v
g i o i
h e r j
i m h q
j p i m
k u q w
l q m e
m j d t
n x x n
o v j g
p f n p
q h u h
r d f f
s n l z
t t t o
u c s
v z b k
w s g r
x a a
y a z d
z k e y

l w u

Table 1: The key for the three substitution ciphers. For example, plaintext letter ‘a’ is
encoded as ‘b’ in the f code, ‘ ’ (space) in the h code, and ‘x’ in the j code.

10

5.3. Energy change in Metropolis

As the Metropolis algorithm runs, the walk on the graph G should con-
verge to nodes with the lowest energy. Figure 2 confirm that energy of nodes
lowers as the number of step taken increases.

Figure 2: The energy of the nodes encountered during the walk over the Metropolis graph.
From left to right, the walks are over the f code, h code, and j code, respectively.

The energy very quickly converges to the minimum as the walk on the
Metropolis graph goes on. In fact, minimum energy is reached at around
5, 000 steps for all three codes. This suggests that the hidden permutation can
be found by running the Metropolis algorithm for only 5, 000 steps, instead
of 100, 000. To confirm this hypothesis, I ran an experiment only executing
Metropolis for 5, 000 steps and successfully decoded all three codes.

Therefore, we could propose an improvement over Algorithm 1. Instead
of running the Metropolis algorithm for a fixed number of steps T , we can
terminate the algorithm by checking for convergence of energy. We can define
convergence to be when the energy of the current node does not change for
3, 000 consecutive steps.

5.4. Complexity of Decoding

There are many factors that might influence the ease of which a scrambled
text can be decoded.

One of characteristics that made decoding the three texts possible is that
the encoded texts are sufficiently long. The three pieces of texts have 4570,
4426, and 4280 symbols, respectively. If the encoded texts had significantly
fewer symbols, decoding with this method might not be possible.

Take an extreme case as a thought experiment: the ciphertext only has
one symbol p. In this case, the most informed guess we can make is that
p encodes the most commonly occurring symbol in natural English – the
space character. As for what the other 26 symbols encode, we can only make

11

random guesses without any information. Even though we can arrive at a
maximum likelihood answer easily, there is a very small chance this answer
is the correct one.

More mathematically, fewer symbols in the ciphertext means the likeli-
hood function (Equation 5) L(σ) would have fewer terms, and so the energy
function E(σ) = − logL(σ) would be scales smaller. This makes it harder to
identify the σ that minimizes the energy, because less data means the energy
is less accurate. With a noisy energy estimation, we may converge to a wrong
permutation that has the least empirical energy but not the least real energy.

Another factor that influences the decoding complexity is the semantic
similarity between the target encoded text and the source text used to obtain
Pone and Q. The more similar the source and target tasks are, the easier it
is to decode.

As another thought experiment, take the source text to be a Shakespeare
play, and the target text to be “text speak” taken from online sources on the
internet in 2022. While the source text is filled with Elizabethan English, the
target text is modern English sprinkled with newly invented acronyms. The
transitional probabilities Pone and Q must be different for these two types
of texts, and so trying to match them assuming they’re the same must not
work very well.

In my experiments, the source text is a 19th century novel, while the
three encoded texts are a 1960s Physics textbook, a 90s fantasy novel, and
a 1939 novel by an Irish writer, respectively. While the first two encoded
texts encode standard English, the last one is written largely in idiosyncratic
language, which blends standard English words with made-up words in mul-
tiple languages. So while the source text is similar to the first two encoded
texts, it is different from the third one to some degree. Therefore, it can
be expected that the third text (j code) is harder to decode than its two
counterparts.

To test the difficulty of decoding different encoded texts, I propose run-
ning the algorithm with different random seeds and recording the success
rates. A lower success rate would indicate a harder decoding problem.
Through changing the random seeds, I change how the random walk is or-
dered in the Metropolis algorithm by controlling how the neighboring node
is chosen. For all 10 random seeds I used, f code, h code, and j code has
decoding success rates 90%, 80%, and 50%. This suggests that j code is
much harder to decode, because it is more brittle to the order of the nodes
encountered in the random walk. It is also interesting to note that none of

12

the nodes had a success rate of 100%, suggesting that the algorithm in this
paper is not always reliable.

5.5. Run Time of the Program

On a Linux machine using 1 CPU core, taking 100, 000 steps using the
Metropolis algorithm takes about 15 minutes, and taking 5, 000 steps takes
less than 1 minute. Therefore, it only takes less than 1 minute each to decode
the three ciphers, which is very efficient.

5.6. Choices of Parameters

The parameters that can vary in the algorithm are: the random seed, the
inverse temperature β, number of total steps T , and the start node x1 ∈ G.
The change of random seed and T are already addressed above, and I will
address the effects of β and x1 here.

The parameter β controls the probability of moving to a higher-energy
node: e−βE with E ≥ 0. A larger β value corresponds to a smaller probability
of jumping to a higher-energy node. Of

β ∈ {0.001, 0.01, 0.1, 0.5, 1, 5, 10, 102, 103, 104, 105, 106, 107}

, β = {0.001, 0.01} were not able to decode the f text. It is expected that
small β won’t be able to break the substitution cipher: when the probability
of moving is too big, the random walk won’t stay at the minimum and never
converges, or it might never find the minimum because of a tendency to move
towards high-energy nodes. However, it is a bit surprising that big β is still
able to successfully decode. When β is too large, there is no chance of jumping
to a higher-energy node, and so the random walk might get stuck in a local
minimum and never finds the global minimum. The reason that decoding is
still successful is that the distribution of σ in a unimodal distribution, and
doesn’t suffer from being stuck at local extremums.

The parameter x1 controls the starting position of the random walk on
graph G. I ran 10 experiments with different starting positions, and all of
them converged quickly and successfully decoded the f text. It seems that
x1 does not have a big effect on the decoding algorithm, so it can be chosen
at random.

13

6. Conclusion

In this paper, I have presented a method for decoding substitution ciphers
with Maximum Likelihood method and the Metropolis algorithm. Evaluation
using three empirical ciphers show that the algorithm is effective in most
cases.

References

[1] S. Singh, The code book, volume 7, Doubleday New York, 1999.

[2] P. Diaconis, The markov chain monte carlo revolution, Bulletin of the
American Mathematical Society 46 (2009) 179–205.

[3] S. Conner, Simulation and solving substitution codes, Master’s thesis,
Department of Statistics, University of Warwick (2003).

[4] A. E. Gelfand, A. F. Smith, Sampling-based approaches to calculating
marginal densities, Journal of the American statistical association 85
(1990) 398–409.

[5] C. E. Shannon, A mathematical theory of communication, ACM SIG-
MOBILE mobile computing and communications review 5 (2001) 3–55.

[6] N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller,
E. Teller, Equation of state calculations by fast computing machines,
The journal of chemical physics 21 (1953) 1087–1092.

[7] J. Austen, Pride and prejudice, Broadview Press, 2001.

[8] R. P. Feynman, T. Hey, R. W. Allen, Feynman lectures on computation,
CRC Press, 2018.

[9] W. Li, P. Miramontes, Fitting ranked english and spanish letter fre-
quency distribution in us and mexican presidential speeches, Journal of
Quantitative Linguistics 18 (2011) 359–380.

[10] B. New, J. Grainger, On letter frequency effects, Acta Psychologica 138
(2011) 322–328.

14

Appendix A. Full Decoded Messages

Appendix A.1. Decoded f 45.txt

i would now like to take a look at a subject which is extremely interesting
but almost entirely academic in nature this is the subject of the energetics of
computing we want to address the question how much energy must be used
in carrying out a computation this doesnt sound all that academic after all
a feature of most modem machines is that their energy consumption when
they run very fast is quite considerable and one of the limitations of the
fastest machines is the speed at which we can drain off the heat generated
in their components such as transistors during operation the reason i have
described our subject as academic is because we are actually going to ask
another of our fundamental questions what is the minimum energy required
to carry out a computation to introduce these more physical aspects of our
subject i will return to the field covered in the last chapter namely the theory
of information it is possible to treat this subject from a strictly physical
viewpoint and it is this that will make the link with the energy of computation
to begin with i would like to try to give you an understanding of the physical
definition of the information content of a message that physics should get
involved in this area is hardly surprising remember shannon was initially
interested in sending messages down real wires and we cannot send messages
of any kind without some interference from the physical world i am going to
illustrate things by concentrating on a particular very basic physical model
of a message being sent i want you to visualize the message coming in as
a sequence of boxes each of which contains a single atom in each box the
atom can be in one of two places on the left or the right side if its on the left
that counts as a zero bit if its on the right its a one so the stream of boxes
comes past me and by looking to see where each atom is i can work out the
corresponding bit to see how this model can help us understand information
we have to look at the physics of jiggling atoms around this requires us to
consider the physics of gases so i will begin by taking a few things i need from
that let us begin by supposing we have a gas containing n atoms or molecules
occupying a volume v one we will take this gas to be an exceptionally simple
one each atom or molecule within it we take the terms to be interchangeable
here is essentially free there are no forces of attraction or repulsion between
each constituent this is actually a good approximation at moderately low
pressures i am now going to shrink the gas pushing against its volume with
a piston compressing it to volume v two i do all this isothermally that is i

15

immerse the whole system in a thermal bath at a fixed temperature t so that
the temperature of my apparatus remains constant isnt it wonderful that this
has anything to do with what were talking about im going to show you how
first we want to know how much work w it takes to compress the gas now a
standard result in mechanics has it that if a force f moves through a small
distance dx the work done dw is fdx if the pressure of the gas is p and the
cross sectional area of the piston is a we can rewrite this using f equals pa
and letting the volume change of the gas dv equals adx so that dw is pdv now
we draw on a standard result from gas theory for an ideal gas at pressure
p volume v and temperature t we have the relation pv equals nkt where n
is the number of molecules in the gas and k is boltzmanns constant as t
is constant our isothermal assumption we can perform a simple integration
to find w since v two is smaller than v one this quantity is negative and
this is just a result of the convention that work done on a gas rather than
by it has a minus sign now ordinarily when we compress a gas we heat it
up this is a result of its constituent atoms speeding up and gaining kinetic
energy however in our case if we examine the molecules of the gas before
and after compression we find no difference there are the same number and
they are jiggling about no more or less energetically than they were before
there is no difference between the two at the molecular level so where did the
work go we put some in to compress the gas and conservation of energy says
it had to go somewhere in fact it was converted into internal gas heat but
was promptly drained off into the thermal bath keeping the gas at the same
temperature this is actually what we mean by isothermal compression we do
the compression slowly ensuring that at all times the gas and the surrounding
bath are in thermal equilibrium

Appendix A.2. Decoded h 45.txt

mr and mrs dursley of number four privet drive were proud to say that
they were perfectly normal thank you very much they were the last people
youd expect to be involved in anything strange or mysterious because they
just didnt hold with such nonsense mr dursley was the director of a firm
called grunnings which made drills he was a big beefy man with hardly any
neck although he did have a very large mustache mrs dursley was thin and
blonde and had nearly twice the usual amount of neck which came in very
useful as she spent so much of her time craning over garden fences spying on
the neighbors the dursleys had a small son called dudley and in their opinion
there was no finer boy anywhere the dursleys had everything they wanted

16

but they also had a secret and their greatest fear was that somebody would
discover it they didnt think they could bear it if anyone found out about the
potters mrs potter was mrs dursleys sister but they hadnt met for several
years in fact mrs dursley pretended she didnt have a sister because her sister
and her good for nothing husband were as undursleyish as it was possible
to be the dursleys shuddered to think what the neighbors would say if the
potters arrived in the street the dursleys knew that the potters had a small
son too but they had never even seen him this boy was another good reason
for keeping the potters away they didnt want dudley mixing with a child
like that when mr and mrs dursley woke up on the dull gray tuesday our
story starts there was nothing about the cloudy sky outside to suggest that
strange and mysterious things would soon be happening all over the country
mr dursley hummed as he picked out his most boring tie for work and mrs
dursley gossiped away happily as she wrestled a screaming dudley into his
high chair none of them noticed a large tawny owl flutter past the window at
half past eight mr dursley picked up his briefcase pecked mrs dursley on the
cheek and tried to kiss dudley good bye but missed because dudley was now
having a tantrum and throwing his cereal at the walls little tyke chortled mr
dursley as he left the house he got into his car and backed out of number
fours drive it was on the corner of the street that he noticed the first sign of
something peculiar a cat reading a map for a second mr dursley didnt realize
what he had seen then he jerked his head around to look again there was a
tabby cat standing on the corner of privet drive but there wasnt a map in
sight what could he have been thinking of it must have been a trick of the
light mr dursley blinked and stared at the cat it stared back as mr dursley
drove around the corner and up the road he watched the cat in his mirror it
was now reading the sign that said privet drive no looking at the sign cats
couldnt read maps or signs mr dursley gave himself a little shake and put the
cat out of his mind as he drove toward town he thought of nothing except a
large order of drills he was hoping to get that day but on the edge of town
drills were driven out of his mind by something else as he sat in the usual
morning traffic jam he couldnt help noticing that there seemed to be a lot
of strangely dressed people about people in cloaks mr dursley couldnt bear
people who dressed in funny clothes the getups you saw on young people he
supposed this was some stupid new fashion he drummed his fingers on the
steering wheel and his eyes fell on a huddle of these weirdos standing quite
close by they were whispering excitedly together mr dursley was enraged to
see that a couple of them werent young at all why that man had to be older

17

than he was and wearing an emerald green cloak the nerve of him but then it
struck mr dursley that this was probably some silly stunt these people were
obviously collecting for something yes that would be it the traffic moved on
and a few minutes later mr dursley arrived in the grunnings parking lot his
mind back on drills mr dursley always sat with his back to the window in
his office on the ninth floor if he hadnt he might have found it harder to
concentrate on drills that morning he didnt see the owls swooping past in
broad daylight though people down in the street did they pointed and gazed
open mouthed as owl after owl sped overhead most of them had never seen
an owl even at nighttime mr dursley however had a perfectly normal owl
free morning he yelled at five different people he made several important
telephone

Appendix A.3. Decoded j 45.txt

riverrun past eve and adams from swerve of shore to bend of bay brings
us by a commodius vicus of recirculation back to howth castle and environs
sir tristram violer damores frover the short sea had passencore rearrived from
north armorica on this side the scraggy isthmus of europe minor to wielder-
fight his penisolate war nor had topsawyers rocks by the stream oconee ex-
aggerated themselse to laurens countys gorgios while they went doublin their
mumper all the time nor avoice from afire bellowsed mishe mishe to tauftauf
thuartpeatrick not yet though venissoon after had a kidscad buttended a
bland old isaac not yet though alls fair in vanessy were sosie sesthers wroth
with twone nathandjoe rot a peck of pas malt had jhem or shen brewed by ar-
clight and rory end to the regginbrow was to be seen ringsome on the aquaface
the fall bababadalgharaghtakamminarronnkonnbronntonner ronntuonnthun-
ntrovarrhounawnskawntoohoohoordenenthurnuk of a once wallstrait oldparr
is retaled early in bed and later on life down through all christian minstrelsy
the great fall of the offwall entailed at such short notice the pftjschute of
finnegan erse solid man that the humptyhillhead of humself prumptly sends
an unquiring one well to the west in quest of his tumptytumtoes and their
upturnpikepointandplace is at the knock out in the park where oranges have
been laid to rust upon the green since devlinsfirst loved livvy what clashes
here of wills gen wonts oystrygods gaggin fishy gods brekkek kekkek kekkek
kekkek koax koax koax ualu ualu ualu quaouauh where the baddelaries par-
tisans are still out to mathmaster malachus micgranes and the verdons cat-
apelting the camibalistics out of the whoyteboyce of hoodie head assiegates
and boomeringstroms sod s brood be me fear sanglorians save arms apeal

18

with larms appalling killykillkilly a toll a toll what chance cuddleys what
cashels aired and ventilated what bidimetoloves sinduced by what tegotetab-
solvers what true feeling for their s hayair with what strawng voice of false
jiccup o here here how hoth sprowled met the duskt the father of fornication-
ists but o my shining stars and body how hath fanespanned most high heaven
the skysign of soft advertisement but was iz iseut ere were sewers the oaks of
ald now they lie in peat yet elms leap where askes lay phall if you but will rise
you must and none so soon either shall the pharce for the nunce come to a
setdown secular phoenish bygmester finnegan of the stuttering hand freemen
s maurer lived in the broadest way immarginable in his rushlit toofarback
for messuages before joshuan judges had given us numbers or helviticus com-
mitted deuteronomy one yeastyday he sternely struxk his tete in a tub for
to watsch the future of his fates but ere he swiftly stook it out again by the
might of moses the very water was eviparated and all the guenneses had met
their exodus so that ought to show you what a pentschanjeuchy chap he was
and during mighty odd years this man of hod cement and edifices in toper
s thorp piled buildung supra buildung pon the banks for the livers by the
soangso he addle liddle phifie annie ugged the little craythur wither hayre in
honds tuck up your part inher oftwhile balbulous mithre ahead with goodly
trowel in grasp and ivoroiled overalls which he habitacularly fondseed like
haroun childeric eggeberth he would caligulate by multiplicables the allti-
tude and malltitude until he seesaw by neatlight of the liquor wheretwin
twas born his roundhead staple of other days to rise in undress maisonry
upstanded joygrantit a waalworth of a skyerscape of most eyeful hoyth en-
towerly erigenating from next to nothing and celescalating the himals and all
hierarchitectitiptitoploftical with a burning bush abob off its baubletop and
with larrons o toolers clittering up and tombles a buckets clottering down
of the first was he to bare arms and a name wassaily booslaeugh of riesen-
geborg his crest of huroldry in vert with ancillars troublant argent a hegoak
poursuivant horrid horned his scutschum fessed with archers strung helio of
the second hootch is for husbandman handling his hoe hohohoho mister finn
youre going to be mister finnagain comeday morm and o youre vine senddays
eve and ah youre vinegar hahahaha mister funn youre going to be fined again

Appendix B. Encoded Messages

To make it easier to see the space symbol, the white space character is
replaced with ‘ ’ in the following texts. However, the white space remains

19

unchanged when experiments were performed.

Appendix B.1. f 45.txt

mlsvcqolxvslqmugltvltbuglblqvvulbtlblncwpgrtlsemrelmnlg tdgjgqalmxt
gdgntmxilwctlbqjvntlgxtmdgqalbrbogjmrlmxlxbtcdgltemnlmnlteglncwpgrtl
vylteglgxgdigtmrnlvylrvjfctmxilsglsbxtltvlboodgnnlteglhcgntmvxlevsljcrelgx
gdialjcntlwglcngolmxlrbddamxilvctlblrvjfctbtmvxltemnlovgnxtlnvcxolbqqlt
ebtlbrbogjmrlbytgdlbqqlblygbtcdglvyljvntljvogjljbremxgnlmnltebtltegmdlg
xgdialrvxncjftmvxlsegxltegaldcxlzgdalybntlmnlhcmtglrvxnmogdbwqglbxolv
xglvylteglqmjmtbtmvxnlvylteglybntgntljbremxgnlmnlteglnfggolbtlsemrelsg
lrbxlodbmxlvyylteglegbtligxgdbtgolmxltegmdlrvjfvxgxtnlncrelbnltdbxnmnt
vdnlocdmxilvfgdbtmvxltegldgbnvxlmlebzglognrdmwgolvcdlncwpgrtlbnlbrbo
gjmrlmnlwgrbcnglsglbdglbrtcbqqalivmxiltvlbnulbxvtegdlvylvcdlycxobjgxtb
qlhcgntmvxnlsebtlmnltegljmxmjcjlgxgdialdghcmdgoltvlrbddalvctlblrvjfctbt
mvxltvlmxtdvocrgltegngljvdglfeanmrbqlbnfgrtnlvylvcdlncwpgrtlmlsmqqldgt
cdxltvlteglymgqolrvzgdgolmxlteglqbntlrebftgdlxbjgqaltegltegvdalvylmxyvdj
btmvxlmtlmnlfvnnmwqgltvltdgbtltemnlncwpgrtlydvjlblntdmrtqalfeanmrbq
lzmgsfvmxtlbxolmtlmnltemnltebtlsmqqljbuglteglqmxulsmtelteglgxgdialvylr
vjfctbtmvxltvlwgimxlsmtelmlsvcqolqmugltvltdaltvlimzglavclbxlcxogdntbxo
mxilvylteglfeanmrbqlogymxmtmvxlvylteglmxyvdjbtmvxlrvxtgxtlvylbljgnnb
igltebtlfeanmrnlnevcqoligtlmxzvqzgolmxltemnlbdgblmnlebdoqalncdfdmnmx
ildgjgjwgdlnebxxvxlsbnlmxmtmbqqalmxtgdgntgolmxlngxomxiljgnnbignlovs
xldgbqlsmdgnlbxolsglrbxxvtlngxoljgnnbignlvylbxalumxolsmtevctlnvjglmxtg
dygdgxrglydvjlteglfeanmrbqlsvdqolmlbjlivmxiltvlmqqcntdbtgltemxinlwalrv
xrgxtdbtmxilvxlblfbdtmrcqbdlzgdalwbnmrlfeanmrbqljvogqlvylbljgnnbiglwg
mxilngxtlmlsbxtlavcltvlzmncbqmkgltegljgnnbiglrvjmxilmxlbnlblnghcgxrglv
ylwv gnlgbrelvylsemrelrvxtbmxnlblnmxiqglbtvjlmxlgbrelwv lteglbtvjlrbxlw
glmxlvxglvyltsvlfqbrgnlvxlteglqgytlvdltegldmietlnmoglmylmtnlvxlteglqgytl
tebtlrvcxtnlbnlblkgdvlwmtlmylmtnlvxltegldmietlmtnlblvxglnvlteglntdgbjlv
ylwv gnlrvjgnlfbntljglbxolwalqvvumxiltvlngglsegdglgbrelbtvjlmnlmlrbxlsvd
ulvctlteglrvddgnfvxomxilwmtltvlngglevsltemnljvogqlrbxlegqflcnlcxogdntbx
olmxyvdjbtmvxlsglebzgltvlqvvulbtlteglfeanmrnlvylpmiiqmxilbtvjnlbdvcxolt
emnldghcmdgnlcnltvlrvxnmogdlteglfeanmrnlvylibngnlnvlmlsmqqlwgimxlwa
ltbumxilblygsltemxinlmlxggolydvjltebtlqgtlcnlwgimxlwalncffvnmxilsglebzgl
blibnlrvxtbmxmxilxlbtvjnlvdljvqgrcqgnlvrrcfamxilblzvqcjglzlvxglsglsmqqltb
ugltemnlibnltvlwglbxlg rgftmvxbqqalnmjfqglvxglgbrelbtvjlvdljvqgrcqglsmte
mxlmtlsgltbugltegltgdjnltvlwglmxtgdrebxigbwqglegdglmnlgnngxtmbqqalyd
ggltegdglbdglxvlyvdrgnlvylbttdbrtmvxlvdldgfcqnmvxlwgtsggxlgbrelrvxntm

20

tcgxtltemnlmnlbrtcbqqalblivvolbffdv mjbtmvxlbtljvogdbtgqalqvslfdgnncdg
nlmlbjlxvslivmxiltvlnedmxulteglibnlfcnemxilbibmxntlmtnlzvqcjglsmtelblfm
ntvxlrvjfdgnnmxilmtltvlzvqcjglzltsvlmlovlbqqltemnlmnvtegdjbqqaltebtlmnl
mlmjjgdnglteglsevqglnantgjlmxlbltegdjbqlwbtelbtlblym goltgjfgdbtcdgltlnv
ltebtltegltgjfgdbtcdglvyljalbffbdbtcnldgjbmxnlrvxntbxtlmnxtlmtlsvxogdycq
ltebtltemnlebnlbxatemxiltvlovlsmtelsebtlsgdgltbqumxilbwvctlmjlivmxiltvln
evslavclevslymdntlsglsbxtltvluxvslevsljcrelsvdulslmtltbugnltvlrvjfdgnnltegli
bnlxvslblntbxobdoldgncqtlmxljgrebxmrnlebnlmtltebtlmylblyvdrglyljvzgnlte
dvcielblnjbqqlomntbxrglo lteglsvdulovxgloslmnlyo lmylteglfdgnncdglvyltegl
ibnlmnlflbxolteglrdvnnlngrtmvxbqlbdgblvylteglfmntvxlmnlblsglrbxldgsdmt
gltemnlcnmxilylghcbqnlfblbxolqgttmxilteglzvqcjglrebxiglvylteglibnlozlghcbq
nlbo lnvltebtloslmnlfozlxvslsglodbslvxlblntbxobdoldgncqtlydvjlibnltegvdaly
vdlbxlmogbqlibnlbtlfdgnncdglflzvqcjglzlbxoltgjfgdbtcdgltlsglebzgltegldgqbt
mvxlfzlghcbqnlxutlsegdglxlmnlteglxcjwgdlvyljvqgrcqgnlmxlteglibnlbxolulm
nlwvqtkjbxxnlrvxntbxtlbnltlmnlrvxntbxtlvcdlmnvtegdjbqlbnncjftmvxlsglrb
xlfgdyvdjlblnmjfqglmxtgidbtmvxltvlymxolslnmxrglzltsvlmnlnjbqqgdltebxlzl
vxgltemnlhcbxtmtalmnlxgibtmzglbxoltemnlmnlpcntlbldgncqtlvylteglrvxzgx
tmvxltebtlsvdulovxglvxlblibnldbtegdltebxlwalmtlebnlbljmxcnlnmixlxvslvdo
mxbdmqalsegxlsglrvjfdgnnlblibnlsglegbtlmtlcfltemnlmnlbldgncqtlvylmtnlrv
xntmtcgxtlbtvjnlnfggomxilcflbxolibmxmxilumxgtmrlgxgdialevsgzgdlmxlvcd
lrbnglmylsglg bjmxgltegljvqgrcqgnlvylteglibnlwgyvdglbxolbytgdlrvjfdgnnm
vxlsglymxolxvlomyygdgxrgltegdglbdglteglnbjglxcjwgdlbxoltegalbdglpmiiqm
xilbwvctlxvljvdglvdlqgnnlgxgdigtmrbqqaltebxltegalsgdglwgyvdgltegdglmnlx
vlomyygdgxrglwgtsggxltegltsvlbtltegljvqgrcqbdlqgzgqlnvlsegdglomolteglsvd
ulivlsglfctlnvjglmxltvlrvjfdgnnlteglibnlbxolrvxngdzbtmvxlvylgxgdialnbanlm
tleboltvlivlnvjgsegdglmxlybrtlmtlsbnlrvxzgdtgolmxtvlmxtgdxbqlibnlegbtlw
ctlsbnlfdvjftqalodbmxgolvyylmxtvltegltegdjbqlwbteluggfmxilteglibnlbtltegl
nbjgltgjfgdbtcdgltemnlmnlbrtcbqqalsebtlsgljgbxlwalmnvtegdjbqlrvjfdgnnm
vxlsglovlteglrvjfdgnnmvxlnqvsqalgxncdmxiltebtlbtlbqqltmjgnlteglibnlbxolte
glncddvcxomxilwbtelbdglmxltegdjbqlghcmqmwdmcj

Appendix B.2. h 45.txt

dfw xkwdflwksflmczwjywxsdvcfwyjsfwnfhbctwkfhbcwgcfcwnfjskwtjwl z
wtr twtrczwgcfcwncfycptmzwxjfd mwtr xqwzjswbcfzwdsprwtrczwgcfcwtrc
wm ltwncjnmcwzjskwcancptwtjwvcwhxbjmbckwhxw xztrhxowltf xocwjfwd
zltcfhjslwvcp slcwtrczwisltwkhkxtwrjmkwghtrwlsprwxjxlcxlcwdfwksflmczw
g lwtrcwkhfcptjfwjyw wyhfdwp mmckwofsxxhxolwgrhprwd kcwkfhmmlwrc
wg lw wvhowvccyzwd xwghtrwr fkmzw xzwxcpqw mtrjsorwrcwkhkwr bcw

21

wbcfzwm focwdslt prcwdflwksflmczwg lwtrhxw xkwvmjxkcw xkwr kwxc f
mzwtghpcwtrcwsls mw djsxtwjywxcpqwgrhprwp dcwhxwbcfzwslcysmw lwl
rcwlncxtwljwdsprwjywrcfwthdcwpf xhxowjbcfwo fkcxwycxpclwlnzhxowjxw
trcwxchorvjflwtrcwksflmczlwr kw wld mmwljxwp mmckwkskmczw xkwhx
wtrchfwjnhxhjxwtrcfcwg lwxjwyhxcfwvjzw xzgrcfcwtrcwksflmczlwr kwcbcf
ztrhxowtrczwg xtckwvstwtrczw mljwr kw wlcpfctw xkwtrchfwofc tcltwyc f
wg lwtr twljdcvjkzwgjsmkwkhlpjbcfwhtwtrczwkhkxtwtrhxqwtrczwpjsmkwv
c fwhtwhyw xzjxcwyjsxkwjstw vjstwtrcwnjttcflwdflwnjttcfwg lwdflwksflmc
zlwlhltcfwvstwtrczwr kxtwdctwyjfwlcbcf mwzc flwhxwy ptwdflwksflmczwn
fctcxkckwlrcwkhkxtwr bcw wlhltcfwvcp slcwrcfwlhltcfw xkwrcfwojjkwyjfw
xjtrhxowrslv xkwgcfcw lwsxksflmczhlrw lwhtwg lwnjllhvmcwtjwvcwtrcwks
flmczlwlrskkcfckwtjwtrhxqwgr twtrcwxchorvjflwgjsmkwl zwhywtrcwnjttcfl
w ffhbckwhxwtrcwltfcctwtrcwksflmczlwqxcgwtr twtrcwnjttcflwr kw wld m
mwljxwtjjwvstwtrczwr kwxcbcfwcbcxwlccxwrhdwtrhlwvjzwg lw xjtrcfwojjk
wfc ljxwyjfwqccnhxowtrcwnjttcflw g zwtrczwkhkxtwg xtwkskmczwdhahxo
wghtrw wprhmkwmhqcwtr twgrcxwdfw xkwdflwksflmczwgjqcwsnwjxwtrcw
ksmmwof zwtsclk zwjsfwltjfzwlt ftlwtrcfcwg lwxjtrhxow vjstwtrcwpmjskzw
lqzwjstlhkcwtjwlsoocltwtr twltf xocw xkwdzltcfhjslwtrhxolwgjsmkwljjxwvc
wr nncxhxow mmwjbcfwtrcwpjsxtfzwdfwksflmczwrsddckw lwrcwnhpqckwjs
twrhlwdjltwvjfhxowthcwyjfwgjfqw xkwdflwksflmczwojllhnckw g zwr nnhm
zw lwlrcwgfcltmckw wlpfc dhxowkskmczwhxtjwrhlwrhorwpr hfwxjxcwjywt
rcdwxjthpckw wm focwt gxzwjgmwymsttcfwn ltwtrcwghxkjgw twr mywn l
twchortwdfwksflmczwnhpqckwsnwrhlwvfhcyp lcwncpqckwdflwksflmczwjxw
trcwprccqw xkwtfhckwtjwqhllwkskmczwojjkwvzcwvstwdhllckwvcp slcwksk
mczwg lwxjgwr bhxow wt xtfsdw xkwtrfjghxowrhlwpcfc mw twtrcwg mml
wmhttmcwtzqcwprjftmckwdfwksflmczw lwrcwmcytwtrcwrjslcwrcwojtwhxtj
wrhlwp fw xkwv pqckwjstwjywxsdvcfwyjsflwkfhbcwhtwg lwjxwtrcwpjfxcfw
jywtrcwltfcctwtr twrcwxjthpckwtrcwyhfltwlhoxwjywljdctrhxowncpsmh fw
wp twfc khxow wd nwyjfw wlcpjxkwdfwksflmczwkhkxtwfc mhecwgr twrcw
r kwlccxwtrcxwrcwicfqckwrhlwrc kw fjsxkwtjwmjjqw o hxwtrcfcwg lw wt
vvzwp twlt xkhxowjxwtrcwpjfxcfwjywnfhbctwkfhbcwvstwtrcfcwg lxtw wd
nwhxwlhortwgr twpjsmkwrcwr bcwvccxwtrhxqhxowjywhtwdsltwr bcwvccx
w wtfhpqwjywtrcwmhortwdfwksflmczwvmhxqckw xkwlt fckw twtrcwp twh
twlt fckwv pqw lwdfwksflmczwkfjbcw fjsxkwtrcwpjfxcfw xkwsnwtrcwfj kw
rcwg tprckwtrcwp twhxwrhlwdhffjfwhtwg lwxjgwfc khxowtrcwlhoxwtr twl
hkwnfhbctwkfhbcwxjwmjjqhxow twtrcwlhoxwp tlwpjsmkxtwfc kwd nlwjf
wlhoxlwdfwksflmczwo bcwrhdlcmyw wmhttmcwlr qcw xkwnstwtrcwp twjs
twjywrhlwdhxkw lwrcwkfjbcwtjg fkwtjgxwrcwtrjsortwjywxjtrhxowcapcntw

22

wm focwjfkcfwjywkfhmmlwrcwg lwrjnhxowtjwoctwtr twk zwvstwjxwtrcw
ckocwjywtjgxwkfhmmlwgcfcwkfhbcxwjstwjywrhlwdhxkwvzwljdctrhxowcml
cw lwrcwl twhxwtrcwsls mwdjfxhxowtf yyhpwi dwrcwpjsmkxtwrcmnwxjth
phxowtr twtrcfcwlccdckwtjwvcw wmjtwjywltf xocmzwkfcllckwncjnmcw vjs
twncjnmcwhxwpmj qlwdfwksflmczwpjsmkxtwvc fwncjnmcwgrjwkfcllckwhx
wysxxzwpmjtrclwtrcwoctsnlwzjswl gwjxwzjsxowncjnmcwrcwlsnnjlckwtrhlw
g lwljdcwltsnhkwxcgwy lrhjxwrcwkfsddckwrhlwyhxocflwjxwtrcwltccfhxow
grccmw xkwrhlwczclwycmmwjxw wrskkmcwjywtrclcwgchfkjlwlt xkhxowus
htcwpmjlcwvzwtrczwgcfcwgrhlncfhxowcaphtckmzwtjoctrcfwdfwksflmczwg l
wcxf ockwtjwlccwtr tw wpjsnmcwjywtrcdwgcfcxtwzjsxow tw mmwgrzwtr t
wd xwr kwtjwvcwjmkcfwtr xwrcwg lw xkwgc fhxow xwcdcf mkwofccxwpm
j qwtrcwxcfbcwjywrhdwvstwtrcxwhtwltfspqwdfwksflmczwtr twtrhlwg lwnf
jv vmzwljdcwlhmmzwltsxtwtrclcwncjnmcwgcfcwjvbhjslmzwpjmmcpthxowy
jfwljdctrhxowwzclwtr twgjsmkwvcwhtwtrcwtf yyhpwdjbckwjxw xkw wycg
wdhxstclwm tcfwdfwksflmczw ffhbckwhxwtrcwofsxxhxolwn fqhxowmjtwrh
lwdhxkwv pqwjxwkfhmmlwdfwksflmczw mg zlwl twghtrwrhlwv pqwtjwtrc
wghxkjgwhxwrhlwjyyhpcwjxwtrcwxhxtrwymjjfwhywrcwr kxtwrcwdhortwr
bcwyjsxkwhtwr fkcfwtjwpjxpcxtf tcwjxwkfhmmlwtr twdjfxhxowrcwkhkxtw
lccwtrcwjgmlwlgjjnhxown ltwhxwvfj kwk zmhortwtrjsorwncjnmcwkjgxwhx
wtrcwltfcctwkhkwtrczwnjhxtckw xkwo eckwjncxwdjstrckw lwjgmw ytcfwjg
mwlnckwjbcfrc kwdjltwjywtrcdwr kwxcbcfwlccxw xwjgmwcbcxw twxhortt
hdcwdfwksflmczwrjgcbcfwr kw wncfycptmzwxjfd mwjgmwyfccwdjfxhxowrc
wzcmmckw twyhbcwkhyycfcxtwncjnmcwrcwd kcwlcbcf mwhdnjft xtwtcmc
nrjxc

Appendix B.3. j 45.txt

fqksff nupxzousksuxnluxlxtzuvfgtuzrsfksugvuzjgfsuogucsnlugvucxducfqn
izu zucduxubgttglq zukqb zugvufsbqfb exoqgnucxbwuogujgrojubxzoesuxnl
usnkqfgnzuzqfuofqzofxtukqgesfulxtgfszuvfgksfuojsuzjgfouzsxujxlupxzzsnbgf
sufsxffqksluvfgtungfojuxftgfqbxugnuojqzuzqlsuojsuzbfxiiduqzojt zugvus fgp
sutqngfuogurqselsfvqijoujqzupsnqzgexosurxfungfujxluogpzxrdsfzufgbwzucdu
ojsuzofsxtugbgnssusaxiisfxosluojstzsezsuoguex fsnzubg nodzuigfiqgzurjqesu
ojsdursnoulg ceqnuojsqfut tpsfuxeeuojsuoqtsungfuxkgqbsuvfgtuxvqfsucseeg
rzslutqzjsutqzjsuoguox vox vuoj xfopsxofqbwungoudsouojg ijuksnqzzggnux
vosfujxluxuwqlzbxluc oosnlsluxucexnlugeluqzxxbungoudsouojg ijuxeezuvxq
fuqnukxnszzdursfsuzgzqsuzszojsfzurfgojurqojuorgnsunxojxnlmgsufgouxupsb
wugvupxzutxeoujxlumjstugfuzjsnucfsrslucduxfbeqijouxnlufgfdusnluoguojsuf
siiqncfgrurxzuogucsuzssnufqnizgtsugnuojsuxh xvxbsuojsuvxeeucxcxcxlxeijx

23

fxijoxwxttqnxffgnnwgnncfgnnognnsfufgnno gnnoj nnofgkxffjg nxrnzwxrnog
gjggjggflsnsnoj fn wugvuxugnbsurxeezofxqougelpxffuqzufsoxeslusxfeduqnuc
sluxnluexosfugnueqvsulgrnuojfg ijuxeeubjfqzoqxnutqnzofsezduojsuifsxouvxe
eugvuojsugvvrxeeusnoxqesluxouz bjuzjgfoungoqbsuojsupvomzbj osugvuvqn
nsixnusfzsuzgeqlutxnuojxouojsuj tpodjqeejsxlugvuj tzsevupf tpoeduzsnlzux
nu nh qfqniugnsurseeuoguojsurszouqnuh szougvujqzuo tpodo togszuxnluojs
qfu po fnpqwspgqnoxnlpexbsuqzuxouojsuwngbwug ouqnuojsupxfwurjsfsugf
xniszujxksucssnuexqluoguf zou pgnuojsuifssnuzqnbsulskeqnzvqfzouegkslueq
kkdurjxoubexzjszujsfsugvurqeezuisnurgnozugdzofdiglzuixiiqnuvqzjduiglzucf
swwswuwswwswuwswwswuwswwswuwgxauwgxauwgxau xe u xe u xe uh x
g x jurjsfsuojsucxllsexfqszupxfoqzxnzuxfsuzoqeeug ouogutxojtxzosfutxexbj
zutqbifxnszuxnluojsuksflgnzubxoxpseoqniuojsubxtqcxeqzoqbzug ougvuojsur
jgdoscgdbsugvujgglqsujsxluxzzqsixoszuxnlucggtsfqnizofgtzuzgluzucfgglucsu
tsuvsxfuzxniegfqxnzuzxksuxftzuxpsxeurqojuexftzuxppxeeqniuwqeedwqeewq
eeduxuogeeuxuogeeurjxoubjxnbsub llesdzurjxoubxzjsezuxqfsluxnluksnoqexo
slurjxoucqlqtsogegkszuzqnl bslucdurjxouosigosoxczgeksfzurjxouof suvsseqni
uvgfuojsqfuzujxdxqfurqojurjxouzofxrniukgqbsugvuvxezsumqbb pugujsfsujsf
sujgrujgojuzpfgreslutsouojsul zwouojsuvxojsfugvuvgfnqbxoqgnqzozuc ougut
duzjqnqniuzoxfzuxnlucgldujgrujxojuvxnszpxnnslutgzoujqijujsxksnuojsuzwd
zqinugvuzgvouxlksfoqzstsnouc ourxzuqyuqzs ousfsursfsuzsrsfzuojsugxwzugv
uxelungruojsdueqsuqnupsxoudsousetzuesxpurjsfsuxzwszuexdupjxeeuqvudg
uc ourqeeufqzsudg ut zouxnlungnsuzguzggnusqojsfuzjxeeuojsupjxfbsuvgfuo
jsun nbsubgtsuoguxuzsolgrnuzsb exfupjgsnqzjucditszosfuvqnnsixnugvuojsu
zo oosfqniujxnluvfsstsnuzutx fsfueqksluqnuojsucfgxlszourxduqttxfiqnxcesuq
nujqzuf zjeqouoggvxfcxbwuvgfutszz xiszucsvgfsumgzj xnum liszujxluiqksnu
zun tcsfzugfujsekqoqb zubgttqoosluls osfgngtdugnsudsxzodlxdujsuzosfnsed
uzof awujqzuososuqnuxuo cuvgfuogurxozbjuojsuv o fsugvujqzuvxoszuc ous
fsujsuzrqvoeduzoggwuqoug ouxixqnucduojsutqijougvutgzszuojsuksfdurxosfu
rxzuskqpxfxosluxnluxeeuojsui snnszszujxlutsouojsqfusagl zuzguojxoug ijouo
guzjgrudg urjxouxupsnozbjxnms bjdubjxpujsurxzuxnlul fqniutqijoduglludsx
fzuojqzutxnugvujglubstsnouxnluslqvqbszuqnuogpsfuzuojgfpupqesluc qel niu
z pfxuc qel niupgnuojsucxnwzuvgfuojsueqksfzucduojsuzgxnizgujsuxllesueql
lesupjqvqsuxnnqsu iisluojsueqooesubfxdoj furqojsfujxdfsuqnujgnlzuo bwu p
udg fupxfouqnjsfugvorjqesucxec eg zutqojfsuxjsxlurqojuiggleduofgrseuqnuif
xzpuxnluqkgfgqeslugksfxeezurjqbjujsujxcqoxb exfeduvgnlzsslueqwsujxfg nu
bjqelsfqbusiiscsfojujsurg elubxeqi exosucdut eoqpeqbxceszuojsuxeeoqo lsux
nlutxeeoqo lsu noqeujsuzsszxrucdunsxoeqijougvuojsueqh gfurjsfsorqnuuorxz
ucgfnujqzufg nljsxluzoxpesugvugojsfulxdzuogufqzsuqnu nlfszzutxqzgnfdu p

24

zoxnlslumgdifxnoqouxurxxergfojugvuxuzwdsfzbxpsugvutgzousdsv eujgdojus
nogrsfedusfqisnxoqniuvfgtunsaouogungojqniuxnlubseszbxexoqniuojsujqtxez
uxnluxeeujqsfxfbjqosboqoqpoqogpegvoqbxeurqojuxuc fnqniuc zjuxcgcugvvu
qozucx cesogpuxnlurqojuexffgnzuguoggesfzubeqoosfqniu puxnluogtceszuxuc
bwsozubegoosfqniulgrnugvuojsuvqfzourxzujsuogucxfsuxftzuxnluxunxtsurxz
zxqeducggzexs ijugvufqszsniscgfiujqzubfszougvuj fgelfduqnuksfourqojuxnbq
eexfzuofg cexnouxfisnouxujsigxwupg fz qkxnoujgffqlujgfnslujqzuzb ozbj tuv
szzslurqojuxfbjsfzuzof niujseqgugvuojsuzsbgnlujggobjuqzuvgfuj zcxnltxnujx
nleqniujqzujgsujgjgjgjgutqzosfuvqnnudg fsuigqniuogucsutqzosfuvqnnxixqnu
bgtslxdutgftuxnlugudg fsukqnsuzsnllxdzusksuxnluxjudg fsukqnsixfujxjxjxjx
utqzosfuv nnudg fsuigqniuogucsuvqnsluxixqn

Appendix C. Python Code

Appendix C.1. Data Mining

"""

do data mining and obtain the one -point and two -point

statistics about the English

language , and then calculate

the likelihood function

"""

import re

import numpy as np

import matplotlib.pyplot as plt

legal_chars = ’abcdefghijklmnopqrstuvwxyz ’

chars_to_index = {c:i for i, c in enumerate(legal_chars)}

index_to_chars = {i:c for i, c in enumerate(legal_chars)}

def load_data(file=’pride -and -prejudice.txt’):

"""

load the data from the file remove all the punctuations

and make all the words

lower case , only leave

characters a-z and space

return: one long string

"""

with open(file , ’r’) as f:

data = f.read()

25

to lowercase

data = data.lower()

filter out white spaces

data = data.replace(’\n’, ’ ’)

data = data.replace(’\r’, ’ ’)

data = data.replace(’\t’, ’ ’)

only keep the legal characters

data = ’’.join([c for c in data if c in legal_chars])

merge white spaces

data = re.sub(’ +’, ’ ’, data)

return data

def get_one_point_statistics(data):

"""

get the one -point statistics about the English language

from input data

args:

data: a long string

return:

a dictionary with keys as characters and values as

the number of times

"""

get the frequency of each character

freq = {}

for c in legal_chars:

freq[c] = data.count(c)

get the total number of characters

total = sum(freq.values ())

get the probability of each character

for c in freq:

freq[c] /= total

make sure this is a probability distribution

assert abs(sum(freq.values ()) - 1.0) < 1e-6

return freq

def get_transition_matrix(data):

"""

get the transition matrix from input data

args:

data: a long string

26

return:

a matrix Q indexing the transition probabilities

Q(x, y) is the probability of transitioning from x to

y

"""

Q = np.zeros ((len(legal_chars), len(legal_chars)))

count tuples

for i in range(len(data) - 1):

x = chars_to_index[data[i]]

y = chars_to_index[data[i+1]]

Q[x, y] += 1

normalize

Q = Q / Q.sum(axis=1, keepdims=True)

make sure each row is a probability distribution

assert np.isclose(Q.sum(axis=1), 1.0).all()

return Q

def visualize(freq , Q):

"""

visualize the one -point frequencies and the transition

matrix Q

"""

plt.imshow(np.array(list(freq.values ()), dtype=np.float32

).reshape ((1, -1)), cmap=’

Blues ’)

plt.colorbar(orientation="horizontal")

plt.xticks(range(len(freq)), list(freq.keys()))

plt.yticks([], [])

plt.show()

plt.imshow(Q, cmap=’Blues’)

plt.colorbar ()

plt.xticks(range(len(freq)), list(freq.keys()))

plt.yticks(range(len(freq)), list(freq.keys()))

plt.show()

plt.close()

if __name__ == ’__main__ ’:

for debugging and plotting purposes

data = load_data ()

print(len(data))

27

freq = get_one_point_statistics(data)

print(freq)

print(len(freq))

Q = get_transition_matrix(data)

print(Q)

print(Q.shape)

visualize(freq , Q)

Appendix C.2. Metropolis Algorithm and Decoding

"""

this is where the magic happens. This file will decode the

message encoded by the

substitution cipher

"""

import argparse

import random

import math

from copy import deepcopy

import matplotlib.pyplot as plt

import numpy as np

from data_mining import get_one_point_statistics ,

get_transition_matrix , \

load_data , legal_chars , chars_to_index , index_to_chars

def load_encoded_message(file):

"""

load the encoded message from a file into a long string

"""

with open(file , ’r’) as f:

data = f.read()

return data

def swap_element(permutation):

"""

swap the elements at index i and j in permutation

this swapped permutation is defined as a neighbor of the

current

permutation in the MCMC random graph

28

"""

choose two indices to swap

i, j = np.random.choice(len(permutation), 2, replace=

False)

neighbor = list(deepcopy(permutation))

neighbor[i], neighbor[j] = neighbor[j], neighbor[i]

return ’’.join(neighbor)

def energy_func(encoded_msg , one_point_stat , transition_mat ,

permutation):

"""

get the energy of a certain permutation

the energy is defined as the negative log likelihood

likelihood is P(permutation | encoded_msg)

"""

permutation_inverse = lambda b: legal_chars[permutation.

index(b)]

likelihood = 0

liklihood of the first letter

likelihood += math.log(one_point_stat[permutation_inverse

(encoded_msg[0])])

likelihood of the rest of the transition pairs

for i in range(1, len(encoded_msg)-1):

x = permutation_inverse(encoded_msg[i]),

y = permutation_inverse(encoded_msg[i+1])

x_idx , y_idx = chars_to_index[x], chars_to_index[y]

try:

likelihood += math.log(transition_mat[x_idx ,

y_idx])

except ValueError:

transition probability is 0

likelihood += math.log(1e-16)

return -likelihood

def mcmc(num_iters , beta , encoded_msg , one_point_stat ,

transition_mat ,

plot_save_path ,

start_state=’abcdefghijklmnopqrstuvwxyz ’,

plot_every=1):

"""

markov chain monte carlo

29

try to sample the correct permutation according to a

Gibbs distribution

make a plot of the energy of walk throught the random

graph , record the energy

every ‘plot_every ‘ iterations

"""

current_state = start_state

energy = lambda state: energy_func(encoded_msg ,

one_point_stat ,

transition_mat , state)

energy_list = []

start iteration

for i in range(num_iters):

print(f"iteration {i}")

record the energy

if i % plot_every == 0:

energy_list.append(energy(current_state))

choose a neighbor of current state uniformly at

random

next_state = swap_element(current_state)

accept or reject according to energy change

energy_diff = energy(next_state) - energy(

current_state)

if energy_diff < 0:

current_state = next_state

else:

accept_prob = math.exp(-beta * energy_diff)

if random.random () < accept_prob:

accept

current_state = next_state

else:

reject

pass

plot the energy trajectory

plt.plot(plot_every * np.arange(len(energy_list)),

energy_list)

plt.xlabel(’Steps’)

plt.ylabel(’Energy ’)

plt.title(’Energy of Walk Through Metropolis Graph’)

plt.savefig(plot_save_path)

30

return current_state

def decode_message(encoded_msg , permutation , save_to=None):

"""

decode a long string

args:

encoded_msg: a long string encoded by substitution

cipher

permutation: a 27-char string of all legal chars

return:

decoded_msg: a long string decoded by substitution

cipher

"""

permutation_inverse = lambda b: legal_chars[permutation.

index(b)]

decoded_msg = ’’.join(map(permutation_inverse ,

encoded_msg))

save the result

if save_to:

with open(save_to , ’w’) as f:

f.write(decoded_msg)

return decoded_msg

def main():

"""

put everything together

"""

parser = argparse.ArgumentParser ()

parser.add_argument(’--data’, type=str , default=’pride -

and -prejudice.txt’, help=’

the file containing the

data of true English

language ’)

parser.add_argument(’--code’, type=str , default=’f_45.txt

’, help=’the file

containing the encoded

message ’)

parser.add_argument(’--save_path ’, type=str , default=’

decoded.txt’, help=’the

file to save the decoded

message ’)

31

parser.add_argument(’--beta’, type=float , default=1.0,

help=’the beta parameter

of the Gibbs distribution ’

)

parser.add_argument(’--num_iters ’, type=int , default=

100000 , help=’the number

of iterations to run MCMC’

)

args = parser.parse_args ()

set random seed

random.seed(0)

np.random.seed(0)

load the code

encoded = load_encoded_message(args.code)

data mining on the true English language

true_language_data = load_data(args.data)

one_point_stat = get_one_point_statistics(

true_language_data)

transition_matrix = get_transition_matrix(

true_language_data)

run MCMC

final_permutation = mcmc(

num_iters=args.num_iters ,

beta=args.beta ,

encoded_msg=encoded ,

one_point_stat=one_point_stat ,

transition_mat=transition_matrix ,

plot_save_path=args.save_path[:-4] + ’_energy.png’,

)

print(final_permutation)

decode the message

real_msg = decode_message(encoded , final_permutation ,

save_to=args.save_path)

print(real_msg)

if __name__ == ’__main__ ’:

main()

32

