Bayesian Decoding of Substitution Cipher

Paul Zhou
Department of Applied Mathematics, Brown University, Providence, RI, 02192

Abstract

This paper discusses a Bayesian decoding method of substitution cipher.
Maximum Likelihood method is used to match the frequency of symbols in
the encoded text to that of natural English, and the maximization problem
is solved by a Markov Chain Monte Carlo algorithm.

Keywords: Substitution Cipher Decoding, Markov Chain Monte Carlo,
Maximum Likelihood, Metropolis Algorithm

1. Introduction

Substitution Cipher is a text encryption method that encodes plain text
by swapping each symbol by another symbol, transforming the original plain-
text into ciphertext. 1t is a relatively simple method of encrypting intelligible
text into unintelligible text, and has been in use for hundreds of years [1].
Some of these encoded messages carry important information, so it is impor-
tant to have a reliable Mathematical method of solving these ciphers.

An interesting and reliable approach was first proposed by Marc Coram
and Phil Beineke in the Stanford statistical consulting service [2], and later
investigated with more detail by Stephen Conner [3]. Coram proposed break-
ing the substitution cipher with frequency analysis — figuring out the frequen-
cies each individual letter and each pairs of letters occur in natural English
language. He then used the frequencies as a basis for a Markov Chain Monte
Carlo (MCMC) [4] algorithm that successfully found the substitution code
that corresponds best to these frequencies.

In this paper, I will follow the foot steps of Coram and recreate his decod-
ing algorithm. I will model the natural English language as a Markov Chain
and perform Bayesian inference on the substitution code with the maximum
likelihood method, and solve the maximization problem using MCMC. The

March 2, 2022

rest of the paper is organized as follows: First (Section 2), I will formulate
the substitution cipher problem in precise Mathematical language and intro-
duce related background knowledge for solving it. Then, in Section 3, I will
lay out the decoding algorithm in detailed steps. Finally, I will use the algo-
rithm to break three substitution ciphers in practice and discuss the results
(Sections 4 and 5)

2. Problem Setup and Background

In this section, I will formulate the decoding problem and introduce back-
ground knowledge on Bayesian inference and MCMC.

2.1. Scrambling and Decoding

Given a piece of text, we can encrypt it with substitution cipher by scram-
bling it. I consider the English language to be a sequence of 27 distinct sym-
bols: 26 characters a — z and _ (space character). Let S = {a,b,c,...,z,_}
be the set of these 27 unit characters. A substitution cipher is a one-to-one
function

c:5—=>5, o0€S8y

where Sy7 denotes the space of all permutations for a set of size 27. A sub-
stitution cipher o is essentially a permutation of the 27 legal characters,
where each character in the plaintext (the original intelligible text) has a
one-to-one mapping with a character in the ciphertext (the encoded unin-
telligible text). As a result, I will use the expressions “permutation” and
“substitution cipher” interchangeably. Given plaintext sequence ajas...a,,
substitution cipher ¢ will encoded it into an equal-length sequence b1bs...b,
where b; = o(a;).

The decoding problem is: given a sequence of ciphertext b1bs...b,, how do
we find the correct cipher key (permutation) o, to map it back to plaintext
aray...an, = o, (by)o; H(bs)...o (by).

2.2. Digram Model of the English Language

In order to formalize the decoding problem, we have to model the English
language precisely. For decoding purposes, I take the simplifying assumption
that language is just a sequence of discrete symbols. Following Shannon’s
work [5], T assume that language is a stationary stochastic process with
state space S = {a,b,c,...,z, _} and it can be approximated by a Markov

Chain. I will refer to language that satisfies these two assumptions as true
language. For simplicity, I assume a digram model of English: the occurrence
of each symbol is determined only by the previous symbol according to some
probability distribution. This comes from the Markov assumption of true
language. More precisely,

P(a|arag...a;q) = Plagla;—1) t=1,2,3, ...

In other worlds, we consider the English language to be consisting of tuples
of symbols, and the latter symbol is determined by the former according to
some transition distribution. These transition probabilities are encoded by
a square transition matrix @), where Q(z,y) is the probability symbol x will
transition into symbol y in a language sequence. Therefore, each row of the
transition matrix @) is a probability distribution:

>, Q,y)=1, VreS
Q(x,y) >0, Vr,yes

The starting character in a language sequence, ai, is drawn according
to some one-point probability distribution P,,. : S — R. This is the one-
point distribution that encodes how often each symbol occurs in the natural
English language.

Following this digram model, we can model the English language as:

P(ajasas...a,) = P(ay) - P(as|ay) - P(as|laias) - P(aslaiasas)
- P(ay|aias...an 1)
= P(a1) - P(az|ar) - Pas|az) - Plaslas) - - - Plag|an-1)
= Pone(a1) - Q(ar, az) - Qag, az) - - - Qan—1, ay)
2.3. Bayesian Inference
Given the ciphertext bibs...b,, I find the most likely substitution cipher

by performing Bayesian inference on o. There are typically three steps in a
Bayesian inference process:

(1)

1. making a probabilistic model of the prior: in the case of decoding, I
have to model the true language ajas...a, as well as the permutation
o. The prior is P(ajas...a,,0)

2. express the posterior P(olajas...a,) using Bayes Rule.

3. maximum likelihood approach: find the o that maximizes the posterior.

A more detailed approach of these steps is presented in Section 3.

2.4. MCMC and the Metropolis Algorithm

Finding the o, that maximizes the posterior is a hard maximization prob-
lem, because o belongs to a huge state space So7. Naively iterating over all
o to find the maximum is computationally intractable. Therefore, I resort
to solving the problem probabilistically using Markov Chain Monte Carlo
(MCMC) methods.

MCMC is a family of algorithms for sampling from a probability distri-
bution. It performs the sampling by constructing a Markov Chain that has
the desired probability distribution as the equilibrium distribution, and so
samples of that distribution can be obtained by simply recording states from
the Markov Chain. Here, I use MCMC as a way of sampling the distribution
of the permutation o.

Specifically, T use the Metropolis algorithm [6] for sampling. The algo-
rithm assumes a state space S,,, an energy function F : S,, — R, and an
inverse temperature hyperparameter 5. The state space S, is constructed
into a graph G and the algorithm performs a biased walk on G:

Algorithm 1: Metropolis Algorithm

Input: E, 3, S,,, number of total steps T, start node z; € G

Output: Markov chain x, xs, ..., z7

record current node as a state in the resulting Markov Chain

steps taken +=1

use an unbiased random walk to choose a neighbor y

accept/reject rule:
(I) If AE = E(y) — E(z) < 0, then move current node from z to y.
(I) If AE > 0, accept the move from x to y with probability e #2F or

else stay at x.

[N

Repeat Steps 1 to 4, until steps taken > T

This algorithm will output a Markov chain {X;} = {1, 29, ..., x7} which
will eventually converge to the true hidden permutation o,. The reasons for
this convergence will be explained in Section 3. In the end, o, is the answer
to the decoding problem.

3. Computational Methods

First, I will use the Bayesian inference process to find the likelihood func-
tion of permutation o; then, I will solve the maximum likelihood problem
using the Metropolis algorithm.

In order the compute the prior, we must model true language aas...a,
and the distribution of the permutations o.

Following Equation 1, I model true language using a digram model:

F)true(alal--an) = P(me(al) : Q(ala aZ) : Q(a27 a3) T Q(anflan>

where P, is the one-point distribution and) is the transition matrix (Sec-
tion 2). Although we don’t have access to the true P,,. and @), we can ap-
proximate it with data. Given a text corpus of natural English {p;},—12, .~
consisting of symbols in S = {a,b,¢, ...z, _}, we can compute
N 1(pi=
POTLC(':C) = 21:1]V(p :L’) (2)
_ i i(pi=apii=y)
QoY) = =5mr Gy
for all z,y € S, where 1(-) is the identity function.
Next, I will model the distribution of the permutation ¢ as a uniform
distribution on Sy;:

This is the natural design choice given we don’t have any information on the
apriori distribution of o. Moreover, this distribution is independent of the
digram language model.

As a result, the prior will be:

P(alag...an, 0') = Ptrue<a1a2"'an)) P(O-)

1
= Ptrue(a1a2---an) : ﬁ (3)
= Pe(a1)Q(ar,a)Q(az, as) - - - Q(an_1, ay) - 2i7|

The posterior is:

P(bybs...b
P(olbyby.. by) = L ibebns0)

P(bybs...by)
_ P(byby...by|0) - P(0)
~ P(byby...by)
_ P07 (01)o ()07 (b)) - 5
= P(bybs...by)
= Prue(07H(by)a 7 (by) ..o (b)) - % (4)
= Pone(o-il(b1>) : Q(Uﬁl(bl% 071(b2)> t
|
Qo (bu-1), 07 (bn)) - %

X Pope(0™ (51)) Qo™ 1(()1),(771([)2))...
Qo (by—1), 07" (ba))

This gives the likelihood function
L(0) = Pone(07(b1)) - Qo™ (b1), 0 (b)) - + - Q0 (bu-1), 07" (bn)) (5)

The Maximum Likelihood approach suggests that the correct answer is the
one that maximizes the posterior/likelihood:

o, = argmax P(o|b1bs...b,)

g

= argmax L(o)

= arg max log L(o)

g

= argamin —log L(o) (6)
= argmin — 1og(Pone (01 (1)) - Qo1 (by), 07 (by)) - --

g

Qo™ (by—1), 07" (b))
= argamin —1log Pope(a7(b1)) — log Q(a ™ (by), 071 (by))—

—log Qo (bn-1), 01 (by))

I will do solve this minimization problem with the Metropolis algorithm.
First, define a graph G = (V, E) on the space of permutations Ss7. Each

6

node will be one permutation (V' = Sy7) and two nodes o;, 0; are connected
by an edge if 0;, 0; differ only by the swapping of one pair of symbols (e.g.
abed...z_ — _z...dcba and abed...z_ — _z...dcab differ only by swapping a and
b).

Further define energy function for the permutations

E(o) = —log L(0). (7)

Minimizing this energy will equivalently solve the maximum likelihood prob-
lem (Equation 6). The Metropolis algorithm (algorithm 1) provides a way of
doing a walk over the graph such that eventually will converge to staying at
low energy nodes (notice how step 4 encourages movement towards low en-
ergy nodes). The convergence lowest-energy node o, is the permutation that
maximizes the likelihood, and therefore represents the hidden substitution
cipher.
Using the cipher code o, we can easily decode the ciphertext bibs...b,:

a1a...a, = oy ' (by)o " (be)...or ' (by)

4. Experiments

I test the decoding method described above using three pieces of encoded
texts, all of which are included in Appendix B. All experiments are carried
out in Python, and and code is attached in Appendix C.

To compute the prior distribution of the true language, I used the book of
Pride and Prejudice by Jane Austin [7] as a text corpus for natural English
language. The text is converted to all lowercase letters and filtered to only
contain symbols in our defined state space S = {a,b,...,z,_}. Then Equa-
tion 2 is used to data-mine the one-point distribution and transition matrix
of the symbols. When encountering a transition x — y with Q(z,y) = 0, I
set Q(z,y) = 10716 to prevent numerical issues when taking the logarithm
in Equation 7.

For implementing the Metropolis algorithm, the energy is defined as in
Equations 7 and 5. The state space is the space of all permutations So7,
and the inverse temperature parameter is taken to be § = 1. The algorithm
starts at an initial “identity” permutation oy : abc...z_ — abc...z_ and takes
a total of T"= 100, 000 steps.

5. Results and Discussion

5.1. Decoding Results

Using my implementation of the decoding method discussed above, I have
obtained the decoded messages for all three encryption. Excerpts of the
decoded messages are presented below, and the full-length decoded messages
are included in Appendix A. The results show that this Bayesian method
with MCMC can break substitution ciphers with minimal computing power
and time.

For code f_45.txt, the plaintext is an excerpt from Chapter 5 of Feynman
Lectures On Computation [8]:

i would now like to take a look at a subject which is extremely inter-
esting but almost entirely academic in nature this is the subject of the
energetics of computing we want to address the question how much
energy must be used in carrying out a computation

this is actually what we mean by isothermal compression we do the
compression slowly ensuring that at all times the gas and the sur-
rounding bath are in thermal equilibrium

For code h_45.txt, the plaintext is an excerpt from Chapter 1 of Harry
Potter and the Sorcerer’s Stone:

mr and mrs dursley of number four privet drive were proud to say that
they were perfectly normal thank you very much they were the last
people youd expect to be involved in anything strange or mysterious
because they just didnt hold with such nonsense

mr dursley however had a perfectly normal owl free morning he yelled
at five different people he made several important telephone

For code j_45.txt, the plaintext is an excerpt from Chapter 1 of Finnegans
Wake by James Joyce:

riverrun past eve and adams from swerve of shore to bend of bay brings
us by a commodius vicus of recirculation back to howth castle and
environs sir tristram violer damores frover the short sea had passencore

rearrived from north armorica on this side the scraggy isthmus of
europe minor to wielderfight his penisolate war

mister finn youre going to be mister finnagain comeday morm and o
youre vine senddays eve and ah youre vinegar hahahaha mister funn
youre going to be fined again

The three substitution cipher keys are presented in Table 1.

5.2. Visualization of the Digram Language Model

The digram model of English is completely determined by P,,. and @,
both of which are obtained by data mining and visualized in Figure 1. The
figures show that letter ‘e’ and the space symbol occur very frequently in
natural English, and the other symbols often transition into these two char-
acters. This corresponds with one’s common sense about English: ‘e’ is a
common vowel and space occurs very frequently because English words are
almost all shorter than 27 letters. Other popular symbols include ‘a’; ‘n’,
and ‘i’. This approximate distribution of the symbols is also corroborated
by Li and Miramontes [9] and New and Grainger [10].

cno
n |

_S@ononTo

| :— 2| 1
T T T y
0025 0050 0075 0100 0125 0150 0.175 ™ 0.0
abcdefghijkimnopgrstuvwxyz

<XZE<Cmn=00033 _m_

Figure 1: Left: visualization of the one-point distribution P,,.. Right: visualization of
the transition matrix @ of the 27 symbols

Even though the digram model is very simple and is almost definitely not
powerful enough to model real English, experiments have proven that it is
sufficient for decoding substitution ciphers.

permutation / cipher key

plaintext f code h code j code
a b - X
b w v ¢
¢ r p b
d 0 k 1
e g c S
f y y v
g i) i
h e T j
i m h q
] p i m
k u q w
1 q m e
m j d t
n X X n
0 v J g
p f n p
q h u h
r d f f
s n 1 z
t t t 0
u ¢ s _
v z b k
w s g r
X - a a
y a z d
z k e y
_ 1 w u

Table 1: The key for the three substitution ciphers. For example, plaintext letter ‘a’ is
encoded as ‘b’ in the f code, ‘_’ (space) in the h code, and ‘x’ in the j code.

10

5.8. Energy change in Metropolis

As the Metropolis algorithm runs, the walk on the graph G should con-
verge to nodes with the lowest energy. Figure 2 confirm that energy of nodes
lowers as the number of step taken increases.

Energy of Walk Through Metropolis Graph Energy of Walk Through Metropolis Graph Energy of Walk Through Metropolis Graph
00

uuuuu
uuuuu
ooooo
uuuuuu

ooooo

oooooooooo

ooooooooooooooo

uuuuuuuuuu
sssss steps

Figure 2: The energy of the nodes encountered during the walk over the Metropolis graph.
From left to right, the walks are over the f code, h code, and j code, respectively.

The energy very quickly converges to the minimum as the walk on the
Metropolis graph goes on. In fact, minimum energy is reached at around
5,000 steps for all three codes. This suggests that the hidden permutation can
be found by running the Metropolis algorithm for only 5,000 steps, instead
of 100,000. To confirm this hypothesis, I ran an experiment only executing
Metropolis for 5,000 steps and successfully decoded all three codes.

Therefore, we could propose an improvement over Algorithm 1. Instead
of running the Metropolis algorithm for a fixed number of steps 7', we can
terminate the algorithm by checking for convergence of energy. We can define
convergence to be when the energy of the current node does not change for
3,000 consecutive steps.

5.4. Complexity of Decoding

There are many factors that might influence the ease of which a scrambled
text can be decoded.

One of characteristics that made decoding the three texts possible is that
the encoded texts are sufficiently long. The three pieces of texts have 4570,
4426, and 4280 symbols, respectively. If the encoded texts had significantly
fewer symbols, decoding with this method might not be possible.

Take an extreme case as a thought experiment: the ciphertext only has
one symbol p. In this case, the most informed guess we can make is that
p encodes the most commonly occurring symbol in natural English — the
space character. As for what the other 26 symbols encode, we can only make

11

random guesses without any information. Even though we can arrive at a
maximum likelihood answer easily, there is a very small chance this answer
is the correct one.

More mathematically, fewer symbols in the ciphertext means the likeli-
hood function (Equation 5) L(o) would have fewer terms, and so the energy
function E(o) = —log L(o) would be scales smaller. This makes it harder to
identify the o that minimizes the energy, because less data means the energy
is less accurate. With a noisy energy estimation, we may converge to a wrong
permutation that has the least empirical energy but not the least real energy.

Another factor that influences the decoding complexity is the semantic
similarity between the target encoded text and the source text used to obtain
P,,. and). The more similar the source and target tasks are, the easier it
is to decode.

As another thought experiment, take the source text to be a Shakespeare
play, and the target text to be “text speak” taken from online sources on the
internet in 2022. While the source text is filled with Elizabethan English, the
target text is modern English sprinkled with newly invented acronyms. The
transitional probabilities P,,. and () must be different for these two types
of texts, and so trying to match them assuming they’re the same must not
work very well.

In my experiments, the source text is a 19" century novel, while the
three encoded texts are a 1960s Physics textbook, a 90s fantasy novel, and
a 1939 novel by an Irish writer, respectively. While the first two encoded
texts encode standard English, the last one is written largely in idiosyncratic
language, which blends standard English words with made-up words in mul-
tiple languages. So while the source text is similar to the first two encoded
texts, it is different from the third one to some degree. Therefore, it can
be expected that the third text (j code) is harder to decode than its two
counterparts.

To test the difficulty of decoding different encoded texts, I propose run-
ning the algorithm with different random seeds and recording the success
rates. A lower success rate would indicate a harder decoding problem.
Through changing the random seeds, I change how the random walk is or-
dered in the Metropolis algorithm by controlling how the neighboring node
is chosen. For all 10 random seeds I used, f code, h code, and j code has
decoding success rates 90%, 80%, and 50%. This suggests that j code is
much harder to decode, because it is more brittle to the order of the nodes
encountered in the random walk. It is also interesting to note that none of

12

the nodes had a success rate of 100%, suggesting that the algorithm in this
paper is not always reliable.

5.5. Run Time of the Program

On a Linux machine using 1 CPU core, taking 100,000 steps using the
Metropolis algorithm takes about 15 minutes, and taking 5,000 steps takes
less than 1 minute. Therefore, it only takes less than 1 minute each to decode
the three ciphers, which is very efficient.

5.6. Choices of Parameters

The parameters that can vary in the algorithm are: the random seed, the
inverse temperature 3, number of total steps 7', and the start node x; € G.
The change of random seed and T are already addressed above, and I will
address the effects of # and z; here.

The parameter [controls the probability of moving to a higher-energy
node: e #F with E > 0. A larger (8 value corresponds to a smaller probability
of jumping to a higher-energy node. Of

3 € {0.001,0.01,0.1,0.5, 1, 5,10, 10% 10%,10*,10°, 10%, 107}

, 8 = {0.001,0.01} were not able to decode the f text. It is expected that
small 5 won’t be able to break the substitution cipher: when the probability
of moving is too big, the random walk won’t stay at the minimum and never
converges, or it might never find the minimum because of a tendency to move
towards high-energy nodes. However, it is a bit surprising that big [is still
able to successfully decode. When [is too large, there is no chance of jumping
to a higher-energy node, and so the random walk might get stuck in a local
minimum and never finds the global minimum. The reason that decoding is
still successful is that the distribution of ¢ in a unimodal distribution, and
doesn’t suffer from being stuck at local extremums.

The parameter x; controls the starting position of the random walk on
graph G. I ran 10 experiments with different starting positions, and all of
them converged quickly and successfully decoded the f text. It seems that
x1 does not have a big effect on the decoding algorithm, so it can be chosen
at random.

13

6. Conclusion

In this paper, I have presented a method for decoding substitution ciphers

with Maximum Likelihood method and the Metropolis algorithm. Evaluation
using three empirical ciphers show that the algorithm is effective in most
cases.

References

1]
2]

3]

[10]

S. Singh, The code book, volume 7, Doubleday New York, 1999.

P. Diaconis, The markov chain monte carlo revolution, Bulletin of the
American Mathematical Society 46 (2009) 179-205.

S. Conner, Simulation and solving substitution codes, Master’s thesis,
Department of Statistics, University of Warwick (2003).

A. E. Gelfand, A. F. Smith, Sampling-based approaches to calculating
marginal densities, Journal of the American statistical association 85
(1990) 398-409.

C. E. Shannon, A mathematical theory of communication, ACM SIG-
MOBILE mobile computing and communications review 5 (2001) 3-55.

N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller,
E. Teller, Equation of state calculations by fast computing machines,
The journal of chemical physics 21 (1953) 1087-1092.

J. Austen, Pride and prejudice, Broadview Press, 2001.

R. P. Feynman, T. Hey, R. W. Allen, Feynman lectures on computation,
CRC Press, 2018.

W. Li, P. Miramontes, Fitting ranked english and spanish letter fre-
quency distribution in us and mexican presidential speeches, Journal of
Quantitative Linguistics 18 (2011) 359-380.

B. New, J. Grainger, On letter frequency effects, Acta Psychologica 138
(2011) 322-328.

14

Appendix A. Full Decoded Messages
Appendiz A.1. Decoded f 45.txt

i would now like to take a look at a subject which is extremely interesting
but almost entirely academic in nature this is the subject of the energetics of
computing we want to address the question how much energy must be used
in carrying out a computation this doesnt sound all that academic after all
a feature of most modem machines is that their energy consumption when
they run very fast is quite considerable and one of the limitations of the
fastest machines is the speed at which we can drain off the heat generated
in their components such as transistors during operation the reason i have
described our subject as academic is because we are actually going to ask
another of our fundamental questions what is the minimum energy required
to carry out a computation to introduce these more physical aspects of our
subject i will return to the field covered in the last chapter namely the theory
of information it is possible to treat this subject from a strictly physical
viewpoint and it is this that will make the link with the energy of computation
to begin with i would like to try to give you an understanding of the physical
definition of the information content of a message that physics should get
involved in this area is hardly surprising remember shannon was initially
interested in sending messages down real wires and we cannot send messages
of any kind without some interference from the physical world i am going to
illustrate things by concentrating on a particular very basic physical model
of a message being sent i want you to visualize the message coming in as
a sequence of boxes each of which contains a single atom in each box the
atom can be in one of two places on the left or the right side if its on the left
that counts as a zero bit if its on the right its a one so the stream of boxes
comes past me and by looking to see where each atom is i can work out the
corresponding bit to see how this model can help us understand information
we have to look at the physics of jiggling atoms around this requires us to
consider the physics of gases so i will begin by taking a few things i need from
that let us begin by supposing we have a gas containing n atoms or molecules
occupying a volume v one we will take this gas to be an exceptionally simple
one each atom or molecule within it we take the terms to be interchangeable
here is essentially free there are no forces of attraction or repulsion between
each constituent this is actually a good approximation at moderately low
pressures i am now going to shrink the gas pushing against its volume with
a piston compressing it to volume v two i do all this isothermally that is i

15

immerse the whole system in a thermal bath at a fixed temperature t so that
the temperature of my apparatus remains constant isnt it wonderful that this
has anything to do with what were talking about im going to show you how
first we want to know how much work w it takes to compress the gas now a
standard result in mechanics has it that if a force f moves through a small
distance dx the work done dw is fdx if the pressure of the gas is p and the
cross sectional area of the piston is a we can rewrite this using f equals pa
and letting the volume change of the gas dv equals adx so that dw is pdv now
we draw on a standard result from gas theory for an ideal gas at pressure
p volume v and temperature t we have the relation pv equals nkt where n
is the number of molecules in the gas and k is boltzmanns constant as t
is constant our isothermal assumption we can perform a simple integration
to find w since v two is smaller than v one this quantity is negative and
this is just a result of the convention that work done on a gas rather than
by it has a minus sign now ordinarily when we compress a gas we heat it
up this is a result of its constituent atoms speeding up and gaining kinetic
energy however in our case if we examine the molecules of the gas before
and after compression we find no difference there are the same number and
they are jiggling about no more or less energetically than they were before
there is no difference between the two at the molecular level so where did the
work go we put some in to compress the gas and conservation of energy says
it had to go somewhere in fact it was converted into internal gas heat but
was promptly drained off into the thermal bath keeping the gas at the same
temperature this is actually what we mean by isothermal compression we do
the compression slowly ensuring that at all times the gas and the surrounding
bath are in thermal equilibrium

Appendiz A.2. Decoded h_45.txt

mr and mrs dursley of number four privet drive were proud to say that
they were perfectly normal thank you very much they were the last people
youd expect to be involved in anything strange or mysterious because they
just didnt hold with such nonsense mr dursley was the director of a firm
called grunnings which made drills he was a big beefy man with hardly any
neck although he did have a very large mustache mrs dursley was thin and
blonde and had nearly twice the usual amount of neck which came in very
useful as she spent so much of her time craning over garden fences spying on
the neighbors the dursleys had a small son called dudley and in their opinion
there was no finer boy anywhere the dursleys had everything they wanted

16

but they also had a secret and their greatest fear was that somebody would
discover it they didnt think they could bear it if anyone found out about the
potters mrs potter was mrs dursleys sister but they hadnt met for several
years in fact mrs dursley pretended she didnt have a sister because her sister
and her good for nothing husband were as undursleyish as it was possible
to be the dursleys shuddered to think what the neighbors would say if the
potters arrived in the street the dursleys knew that the potters had a small
son too but they had never even seen him this boy was another good reason
for keeping the potters away they didnt want dudley mixing with a child
like that when mr and mrs dursley woke up on the dull gray tuesday our
story starts there was nothing about the cloudy sky outside to suggest that
strange and mysterious things would soon be happening all over the country
mr dursley hummed as he picked out his most boring tie for work and mrs
dursley gossiped away happily as she wrestled a screaming dudley into his
high chair none of them noticed a large tawny owl flutter past the window at
half past eight mr dursley picked up his briefcase pecked mrs dursley on the
cheek and tried to kiss dudley good bye but missed because dudley was now
having a tantrum and throwing his cereal at the walls little tyke chortled mr
dursley as he left the house he got into his car and backed out of number
fours drive it was on the corner of the street that he noticed the first sign of
something peculiar a cat reading a map for a second mr dursley didnt realize
what he had seen then he jerked his head around to look again there was a
tabby cat standing on the corner of privet drive but there wasnt a map in
sight what could he have been thinking of it must have been a trick of the
light mr dursley blinked and stared at the cat it stared back as mr dursley
drove around the corner and up the road he watched the cat in his mirror it
was now reading the sign that said privet drive no looking at the sign cats
couldnt read maps or signs mr dursley gave himself a little shake and put the
cat out of his mind as he drove toward town he thought of nothing except a
large order of drills he was hoping to get that day but on the edge of town
drills were driven out of his mind by something else as he sat in the usual
morning traffic jam he couldnt help noticing that there seemed to be a lot
of strangely dressed people about people in cloaks mr dursley couldnt bear
people who dressed in funny clothes the getups you saw on young people he
supposed this was some stupid new fashion he drummed his fingers on the
steering wheel and his eyes fell on a huddle of these weirdos standing quite
close by they were whispering excitedly together mr dursley was enraged to
see that a couple of them werent young at all why that man had to be older

17

than he was and wearing an emerald green cloak the nerve of him but then it
struck mr dursley that this was probably some silly stunt these people were
obviously collecting for something yes that would be it the traffic moved on
and a few minutes later mr dursley arrived in the grunnings parking lot his
mind back on drills mr dursley always sat with his back to the window in
his office on the ninth floor if he hadnt he might have found it harder to
concentrate on drills that morning he didnt see the owls swooping past in
broad daylight though people down in the street did they pointed and gazed
open mouthed as owl after owl sped overhead most of them had never seen
an owl even at nighttime mr dursley however had a perfectly normal owl
free morning he yelled at five different people he made several important
telephone

Appendiz A.3. Decoded j_45.txt

riverrun past eve and adams from swerve of shore to bend of bay brings
us by a commodius vicus of recirculation back to howth castle and environs
sir tristram violer damores frover the short sea had passencore rearrived from
north armorica on this side the scraggy isthmus of europe minor to wielder-
fight his penisolate war nor had topsawyers rocks by the stream oconee ex-
aggerated themselse to laurens countys gorgios while they went doublin their
mumper all the time nor avoice from afire bellowsed mishe mishe to tauftauf
thuartpeatrick not yet though venissoon after had a kidscad buttended a
bland old isaac not yet though alls fair in vanessy were sosie sesthers wroth
with twone nathandjoe rot a peck of pas malt had jhem or shen brewed by ar-
clight and rory end to the regginbrow was to be seen ringsome on the aquaface
the fall bababadalgharaghtakamminarronnkonnbronntonner ronntuonnthun-
ntrovarrhounawnskawntoohoohoordenenthurnuk of a once wallstrait oldparr
is retaled early in bed and later on life down through all christian minstrelsy
the great fall of the offwall entailed at such short notice the pftjschute of
finnegan erse solid man that the humptyhillhead of humself prumptly sends
an unquiring one well to the west in quest of his tumptytumtoes and their
upturnpikepointandplace is at the knock out in the park where oranges have
been laid to rust upon the green since devlinsfirst loved livvy what clashes
here of wills gen wonts oystrygods gaggin fishy gods brekkek kekkek kekkek
kekkek koax koax koax ualu ualu ualu quaouauh where the baddelaries par-
tisans are still out to mathmaster malachus micgranes and the verdons cat-
apelting the camibalistics out of the whoyteboyce of hoodie head assiegates
and boomeringstroms sod s brood be me fear sanglorians save arms apeal

18

with larms appalling killykillkilly a toll a toll what chance cuddleys what
cashels aired and ventilated what bidimetoloves sinduced by what tegotetab-
solvers what true feeling for their s hayair with what strawng voice of false
jiccup o here here how hoth sprowled met the duskt the father of fornication-
ists but o my shining stars and body how hath fanespanned most high heaven
the skysign of soft advertisement but was iz iseut ere were sewers the oaks of
ald now they lie in peat yet elms leap where askes lay phall if you but will rise
you must and none so soon either shall the pharce for the nunce come to a
setdown secular phoenish bygmester finnegan of the stuttering hand freemen
s maurer lived in the broadest way immarginable in his rushlit toofarback
for messuages before joshuan judges had given us numbers or helviticus com-
mitted deuteronomy one yeastyday he sternely struxk his tete in a tub for
to watsch the future of his fates but ere he swiftly stook it out again by the
might of moses the very water was eviparated and all the guenneses had met
their exodus so that ought to show you what a pentschanjeuchy chap he was
and during mighty odd years this man of hod cement and edifices in toper
s thorp piled buildung supra buildung pon the banks for the livers by the
soangso he addle liddle phifie annie ugged the little craythur wither hayre in
honds tuck up your part inher oftwhile balbulous mithre ahead with goodly
trowel in grasp and ivoroiled overalls which he habitacularly fondseed like
haroun childeric eggeberth he would caligulate by multiplicables the allti-
tude and malltitude until he seesaw by neatlight of the liquor wheretwin
twas born his roundhead staple of other days to rise in undress maisonry
upstanded joygrantit a waalworth of a skyerscape of most eyeful hoyth en-
towerly erigenating from next to nothing and celescalating the himals and all
hierarchitectitiptitoploftical with a burning bush abob off its baubletop and
with larrons o toolers clittering up and tombles a buckets clottering down
of the first was he to bare arms and a name wassaily booslaeugh of riesen-
geborg his crest of huroldry in vert with ancillars troublant argent a hegoak
poursuivant horrid horned his scutschum fessed with archers strung helio of
the second hootch is for husbandman handling his hoe hohohoho mister finn
youre going to be mister finnagain comeday morm and o youre vine senddays
eve and ah youre vinegar hahahaha mister funn youre going to be fined again

Appendix B. Encoded Messages

To make it easier to see the space symbol, the white space character is
replaced with ‘" in the following texts. However, the white space remains

19

unchanged when experiments were performed.

Appendiz B.1. f 45.tat

mlsveqolxvslgmugltvitbuglblgvvulbtlblnewpgrtlsemrelmnlg_tdgjgqalmxt
gdgntmxilwctlbgjvntlgxtmdggalbrbogjmrimxlxbtcedgltemnlmnlteglnewpgrtl
vylteglgxgdigtmrnlvylrvifctmxilsglsbxtltviboodgnnlteglhcgntmvxlevsljcrelgx
gdialjentlwglengolmxIrbddamxilvetlblrvjfetbtmvxltemnlovgnxtlnvexolbqqlt
ebtlbrbogjmrlbytgdlbqqlblygbtcdglvyljvntljvogjljbremxgnlmnltebtltegmdlg
xgdialrvxncjftmvxlsegxltegaldcxlzgdalybntlmnlhemtglrvxnmogdbwqglbxolv
xglvylteglgmjmtbtmvxnlvylteglybntgntljbremxgnlmnlteglnfggolbtlsemrelsg
Irbxlodbmxlvyylteglegbtligxgdbtgolmxltegmdlrvifvxgxtnlncrelbnltdbxnmnt
vdnlocdmxilvfgdbtmvxltegldgbnvxlmlebzglognrdmwgolvedlnewpgrtlbnlbrbo
gimrlmnlwgrbenglsglbdglbrtcbqqalivmxiltvlbnulbxvtegdlvylvedlycxobjgxtb
qlhcgntmvxnlsebtlmnltegljmxmjcjlgxgdialdghcmdgoltvirbddalvetlblrvifetbt
mvxltvimxtdvocrgltegngljvdglfeanmrbqglbnfgrtnlvylvedInewpgrtlmlsmqqldgt
cdxltvlteglymgqolrvzgdgolmxlteglgbntlrebftgdlxbjgqaltegltegvdalvylmxyvdj
btmvxlmtlmnlfvnnmwqgltvltdgbtltemnlncwpgrtlydvjlblntdmrtqalfeanmrbq
lzmgsfvmxtlbxolmtlmnltemnltebtlsmqqljbuglteglgmxulsmtelteglgxgdialvylr
vijfctbtmvxltvlwgimxlsmtelmlsveqolgmugltvitdaltvlimzglavelbxlexogdntbxo
mxilvylteglfeanmrbglogymxmtmvxlvylteglmxyvdjbtmvxlrvxtgxtlvylbljgnnb
igltebtlfeanmrnlneveqoligtlmxzvqzgolmxltemnlbdgblmnlebdoqgalnedfdmnmx
ildgjgjwgdlnebxxvxlsbnlmxmtmbqqalmxtgdgntgolmxlngxomxiljgnnbignlovs
xldgbqglsmdgnlbxolsglrbxxvtlngxoljgnnbignlvylbxalumxolsmtevctlnvjglmxtg
dygdgxrglydvijlteglfeanmrbqlsvdqolmlbjlivimxiltvimgqentdbtgltemxinlwalrv
xrgxtdbtmxilvxlblfbdtmrcgbdlzgdalwbnmrlfeanmrbqgljvogqlvylbljgnnbiglwg
mxilngxtlmlsbxtlavcltvlzmncbgmkgltegljgnnbiglrvimxilmxlbnlblnghcgxrglv
ylwv_gnlgbrelvylsemrelrvxtbmxnlblnmxiqglbtvilmxlgbrelwv_lteglbtvjlrbxlw
glmxlvxglvyltsvlfgbrgnlvxlteglqgytlvdltegldmietlnmoglmylmtnlvxlteglqgytl
tebtlrvextnlbnlblkgdvlwmtlmylmtnlvxltegldmietlmtnlblvxglnvlteglntdgbjlv
ylwv_gnlrvjgnlfbntljglbxolwalqvvumxiltvingglsegdglgbrelbtvjlmnlmlrbxlsvd
ulvctlteglrvddgnfvxomxilwmtltvingglevsltemnljvogqglrbxlegqflenlexogdntbx
olmxyvdjbtmvxlsglebzgltvlgvvulbtlteglfeanmrnlvylpmiigmxilbtvjnlbdvexolt
emnldghcmdgnlenltvlirvxnmogdlteglfeanmrnlvylibngnlnvlimlsmqqlwgimxlwa
Itbumxilblygsltemxinlmlxggolydvjltebtlqgtlenlwgimxlwalncffvnmxilsglebzgl
blibnlrvxtbmxmxilxlbtvjnlvdljvqgreqgnlvrrefamxilblzvqcjglzlvxglsglsmqqltb
ugltemnlibnltvlwglbxlg _rgftmvxbqqalnmjfqglvxglgbrelbtvjlvdljvqgreqglsmte
mxImtlsgltbugltegltgdjnltvlwglmxtgdrebxigbwqglegdglmnlgnngxtmbqqalyd
geltegdglbdglxvlyvdrgnlvylbttdbrtmvxlvdldgfcqnmvxlwgtsgegxlgbrelrvxntm

20

tegxtltemnlmnlbrtcbqqalblivvolbffdv_mjbtmvxlbtljvogdbtgqalqvslfdgnnedg
nlmlbjlxvslivmxiltvinedmxulteglibnlfcnemxilbibmxntlmtnlzvqcjglsmtelblfm
ntvxlrvjfdgnnmxilmtltvlzvqejglzltsvimlovlbggltemnlmnvtegdjbqqaltebtlmnl
mlmjjgdnglteglsevqglnantgjlmxlbltegdjbglwbtelbtlblym _goltgjfgdbtcdgltlnv
ltebtltegltgjfgdbtcedglvyljalbffbdbtenldgjbmxnlrvxntbxtlmnxtlmtlsvxogdycq
ltebtltemnlebnlbxatemxiltvlovlsmtelsebtlsgdgltbqumxilbwvctlmjlivixiltvin
evslavclevslymdntlsglsbxtltvliuxvslevsljcrelsvdulslmtltbugnltvirvjfdgnnltegli
bnlxvslblntbxobdoldgncqtlmxljgrebxmrnlebnlmtltebtlmylblyvdrglyljvzgnlte
dvcielblnjbgqlomntbxrglo_lteglsvdulovxgloslmnlyo_lmylteglfdgnncdglvyltegl
ibnlmnlflbxolteglrdvnnlngrtmvxbqlbdgblvylteglfmntvxlmnlblsglrbxldgsdmt
gltemnlenmxilylghcbgnlfblbxolqgttmxilteglzvqcjglrebxiglvylteglibnlozlghcbq
nlbo_lnvltebtloslmnlfozlxvslsglodbslvxlblntbxobdoldgncqtlydvilibnltegvdaly
vdlbxlmogbqlibnlbtlfdgnnedglflzvqcjglzlbxoltgjfgdbtedgltlsglebzgltegldggbt
mvxlfzlghcbgnlxutlsegdglxlmnlteglxcjwgdlvyljvqgreqgnlmxlteglibnlbxolulm
nlwvqgtkjbxxnlrvxntbxtlbnltlmnlrvxntbxtlvedlmnvtegdjbglbnncjftmvxlsglrb
xlfgdyvdjlblnmjfqglmxtgidbtmvxltvlymxolslnmxrglzltsvimnlnjbqqgdltebxlzl
vxgltemnlhcbxtmtalmnlxgibtmzglbxoltemnlmnlpentlbldgneqtlvylteglrvxzgx
tmvxltebtlsvdulovxglvxlblibnldbtegdltebxlwalmtlebnlbljmxcnlnmixlxvslvdo
mxbdmqalsegxlsglrvjfdgnnlblibnlsglegbtlmtlcfltemnlmnlbldgncqtlvylmtnlry
xntmtcgxtlbtvinlnfggomxilcflbxolibmxmxilumxgtmrlgxgdialevsgzgdlmxlved
Irbnglmylsglg _bjmxgltegljvqgreqgnlvylteglibnlwgyvdglbxolbytgdlrvjfdgnnm
vxlsglymxolxvlomyygdgxrgltegdglbdglteglnbjglxcjwgdlbxoltegalbdglpmiiqm
xilbwvctlxvljvdglvdlggnnlgxgdigtmrbqqaltebxltegalsgdglwgyvdgltegdglmnlx
vlomyygdgxrglwgtsggxltegltsvlbtltegljvqgreqbdlqgzgqlnvlsegdglomolteglsvd
ulivlsglfctinviglmxltvirvifdgnnlteglibnlbxolrvxngdzbtmvxlvylgxgdialnbanlm
tleboltvlivinvjgsegdglmxlybrtlmtlsbnlrvxzgdtgolmxtvimxtgdxbqlibnlegbtlw
ctlsbnlfdvjftqalodbmxgolvyylmxtvltegltegdjbqlwbteluggfmxilteglibnlbtltegl
nbjgltgjfgdbtcdgltemnlmnlbrtchbqqalsebtlsgljgbxlwalmnvtegdjbglrvifdgnnm
vxlsglovlteglrvjfdgnnmvxIngvsqalgxncdmxiltebtlbtlbqqltmjgnlteglibnlbxolte
glncddvexomxilwbtelbdglmxltegdjbglghcmgmwdmc;j

Appendix B.2. h_45.txt

dfw_xkwdflwksflmczwjywxsdvefwyjsfwnfhbetwkfhbewgefewnfjskwtjwl_z
wtr_twtrczwgefewnefyeptmzwxjfd mwtr_xqwzjswbefzwdsprwtrezwgcefewtre
wm_ltwncjnmewzjskwecancptwtjwvewhxbjmbckwhxw_xztrhxowltf xocwjfwd
zltcthjslwvep _slewtrezwisltwkhkxtwrjmkwghtrwlsprwxjxlexlewdfwksflmezw
g_lwtrewkhfeptjtwjyw_wyhfdwp_mmckwofsxxhxolwgrhprwd_kewkfhmmlwrc
wg_lw_wvhowveeyzwd xwghtrwr_fkmzw_xzwxcpqw_mtrjsorwrewkhkwr_bew

21

_whcfzwm _focwdslt_prewdflwksflmezwg lwtrhxw _xkwvmjxkew xkwr_kwxc_f
mzwtghpewtrewsls_mw_djsxtwjywxcpqwegrhprwp_dewhxwbcfzwsleysmw_1wl
rewlnextwljwdsprwjywrefwthdewpf xhxowjbefwo_tfkexwycexpelwlnzhxowjxw
trewxchorvjflwtrewksflmezlwr_kw_wld mmwljxwp_mmckwkskmczw_xkwhx
wtrchfwjnhxhjxwtrcfewg lwxjwyhxcfwvjzw _xzgrefewtrewksflmezlwr_kwcebcf
ztrhxowtrczwg_xtckwvstwtrezw_mljwr_kw_wlepfetw_xkwtrchfwofc_tcltwyc_f
wg_lwtr_twljdevikzwgjsmkwkhlpjbefwhtwtrczwkhkxtwtrhxqwtrezwpjsmkwv
c_fwhtwhyw xzjxcwyjsxkwjstw_vjstwtrcwnjttcflwdflwnjttefwg lwdflwksflme
zlwlhltcfwvstwtrezwr_kxtwdctwyjfwlebef mwze_flwhxwy_ptwdflwksflmezwn
fetexkckwlrewkhkxtwr_bew _wlhltcfwvep_slewrcfwlhltcfw_xkwrcefwojjkwyjfw
xjtrhxowrslv_xkwgcfew_lwsxksflmezhlrw_lwhtwg_lwnjllhvmewtjwvewtrewks
flmezlwlrskkcefckwtjwtrhxqwer _twtrewxchorvjflwgjsmkwl_zwhywtrewnjttcfl
w_fthbckwhxwtrewltfectwtrewksflmezlwaxcgwtr_twtrewnjtteflwr_kw_wld_m
mwljxwtjjwvstwtrczwr_kwxcbcfwebexwleexwrhdwtrhlwvjzwg 1w _xjtrefwojjk
wic_ljxwyjfwqcenhxowtrewnjtteflw_g_zwtrczwkhkxtwg xtwkskmezwdhahxo
weghtrw_wprhmkwmhqewtr_twgrexwdfw_xkwdflwksflmcezwgjqewsnwijxwtrew
ksmmwof zwtsclk zwjstwltjfzwlt_ftlwtrcfewg Iwxjtrhxow vjstwtrewpmjskzw
lgzwijstlhkewtjwlsoocltwtr_twltf_xocw _xkwdzltcfhjslwtrhxolwgjsmkwljjxwve
wr_nncexhxow_mmwjbcfwtrewpjsxtfzwdfwksflmezwrsddckw_lwrewnhpqckwis
twrhlwdjltwvjfhxowthcwyjfwgjfqw_xkwdflwksflmczwojllhnckw_g_zwr_nnhm
zw_lwlrewgfcltmckw_wlpfc_dhxowkskmezwhxtjwrhlwrhorwpr_hfwxjxcwjywt
redwxjthpckw_wm_focwt_gxzwjgmwymsttcfwn ltwtrewghxkjgw twr_ mywn_1
twchortwdfwksflmczwnhpqckwsnwrhlwvtheyp_lewnepqeckwdflwksflmezwjxw
trewpreceqw _xkwtthckwtjwghllwkskmezwojjkwvzewvstwdhllckwvep_slewksk
mczwg lwxjgwr_bhxow_wt_xtfsdw_xkwtrfjghxowrhlwpcfc mw_twtrewg_mml
wmhttmewtzqewprjftmckwdfwksflmezw_lwrcwmeytwtrewrjslewrewojtwhxtj
wrhlwp_fw_xkwv_pqckwijstwjywxsdvefwyjsflwkfhbewhtwg lwjxwtrewpjfxcfw
jywtrewltfectwtr_twrewxjthpckwtrewyhfltwlhoxwjywljdctrhxowncepsmh_fw_
wp_twfc_khxow_wd_nwyjfw_wlcpjxkwdfwksflmczwkhkxtwfc_mhecwgr_twrew
r_kwlcexwtrexwrewicfqckwrhlwre_kw_fisxkwtjwmjjqw_o_hxwtrcfewg lw_wt_
vvzwp_twlt_xkhxowjxwtrcwpjfxcfwjywnfhbetwkfhbewvstwtrefewg Ixtw_wd_
nwhxwlhortwgr_twpjsmkwrcwr_bewveexwtrhxghxowjywhtwdsltwr_bewveex
w_wtfthpqwjywtrewmhortwdfwksflmczwvmhxqckw_xkwlt_fckw_twtrewp_twh
twlt_fckwv_pqw_lwdfwksflmczwkfjbew _fjsxkwtrewpjfxcfw_xkwsnwtrewfj_kw
rewg_tprckwtrewp_twhxwrhlwdhffjfwhtwg_lwxjgwfc_khxowtrewlhoxwtr_twl
_hkwnfhbctwkfhbewxjwmjjghxow_twtrcwlhoxwp_tlwpjsmkxtwfc_kwd nlwjf
wlhoxlwdfwksflmczwo_bewrhdlemyw_wmhttmewlr_qew_xkwnstwtrewp_twjs
twjywrhlwdhxkw lwrcwkfjbewtjg_tkwtjgxwrewtrjsortwjywxjtrhxowcapentw

22

_wm _focwjtkcfwjywkfhmmlwrewg lwrjnhxowtjwoctwtr_twk zwvstwjxwtrew
ckocwjywtjgxwkfhmmlwgcfcwkfhbexwijstwjywrhlwdhxkwvzwljdctrhxoweml
cw_lwrewl_twhxwtrewsls_ mwdjfxhxowtf_yyhpwi_dwrewpjsmkxtwremnwxjth
phxowtr_twtrcfewlecedckwtjwvew_wmjtwjywltf_xocmzwkfcllckwncjnmew_vjs
twncjnmewhxwpmj_qlwdfwksflmezwpjsmkxtwve_fwncjnmewgrjwkfcllckwhx
wysxxzwpmjtrclwtrewoctsnlwzjswl_gwixwzjsxowncjnmewrcwlsnnjlckwtrhlw
g lwljdewltsnhkwxcgwy _Irhjxwrewkfsddckwrhlwyhxocflwjxwtrewltcethxow
greemw_xkwrhlwezclwyemmwijxw_wrskkmewjywtrclewgehfkjlwlt_xkhxowus
htewpmjlewvzwtrezwgefcwgrhlnethxowcaphtckmzwtjoctrefwdfwksflmezwg 1
wexfockwtjwleewtr _tw_wpjsnmewjywtredwgcfextwzjsxow _tw_mmwgrzwtr_t
wd_xwr_kwtjwvewjmkefwtr xwrewg_Ilw_xkwge_thxow_xwedcef_mkwofcexwpm
joqwtrewxctbewjywrhdwvstwtrexwhtwltfspqwdfwksflmezwtr _twtrhlwg lwnf
jvvmzwljdewlhmmzwltsxtwtrclewnejnmewgcefewjvbhjslmzwpjmmepthxowy
jfwljdctrhxowwzclwtr _twgjsmkwvewhtwtrewtf_yyhpwdjbckwijxw xkw_wycg
wdhxstclwm_tcfwdfwksflmezw_fthbeckwhxwtrewofsxxhxolwn_fqhxowmjtwrh
lwdhxkwv_pqwjxwkfhmmlwdfwksflmczw_mg_zlwl_twghtrwrhlwv_pqwtjwtrc
wghxkjgwhxwrhlwjyyhpewjxwtrewxhxtrwymjjfwhywrewr_kxtwrewdhortwr
bewyjsxkwhtwr_fkefwtjwpjxpextf_tewjxwkfhmmlwtr_twdjfxhxowrcwkhkxtw
lecewtrewjgmlwlgjjnhxown ltwhxwvfj_kwk_zmhortwtrjsorwncjnmewkjgxwhx
wtrewltfecctwkhkwtrezwnjhxtckw_xkwo_eckwijnexwdjstreckw _lwjgmw_ytcfwig
mwlnckwjbcfre_kwdjltwjywtredwr_kwxcbefwleexw _xwjgmwebexw_twxhortt
hdcwdfwksflmezwrjgebefwr_kw_wncfycptmzwxjfd mwjgmwyfcewdjfxhxowre
wzecmmcekw_twyhbewkhyycfextwnejnmewrewd _kewlebef_ mwhdnjft xtwteme
nrjxc

Appendiz B.3. j_45.txt

faksff_nupxzousksuxnluxlxtzuvfgtuzrsfksugvuzjgfsuogucsnlugvucxducfqn
izu_zucduxubgttglq_zukgb_zugvufsbqfb_exoqgnucxbwuogujgrojubxzoesuxnl
usnkqfgnzuzqfuofqzofxtukqgesfulxtgfszuvigksfuojsuzjgfouzsxujxlupxzzsnbgf
sufsxffqksluvfgtungfojuxftgfqbxugnuojqzuzqlsuojsuzbfxiiduqzojt_zugvus_fgp
sutqngfuogurgselsfvqijoujqzupsnqzgexosurxfungfujxluogpzxrdsfzufghwzucdu
ojsuzofsxtugbgnssusaxiisfxosluojstzsezsuoguex_fsnzubg_nodzuigfiqgzurjqesu
ojsdursnoulg_ceqnuojsqfut_tpsfuxeeuojsuoqtsungfuxkggbsuvfgtuxvqfsucseeg
rzslutqzjsutqzjsuoguox_vox_vuoj_xfopsxofgbwungoudsouojg_ijuksnqzzggnux
vosfujxluxuwqlzbxluc_oosnlsluxucexnlugelugzxxbungoudsouojg_ijuxeezuvxq
fugqnukxnszzdursfsuzgzqsuzszojsfzurfgojurqojuorgnsunxojxnlmgsufgouxupsb
wugvupxzutxeoujxlumjstugfuzjsnucfsrslucduxfbeqijouxnlufgfdusnluoguojsuf
siignefgrurxzuogucsuzssnufqnizgtsugnuojsuxh_xvxbsuojsuvxeeucxexexlxeijx

23

fxijoxwxttqnxffgnnwgnncfgnnognnsfufgnno_gnnoj_nnofgkxffjg nxrnzwxrnog
gjggjegeflsnsnoj_fn_wugvuxugnbsurxeezofxqougelpxffuqzufsoxeslusxfedugnuc
sluxnluexosfugnueqvsulgrnuojfg_ijuxeeubjfqzoqxnutqnzofsezduojsuifsxouvxe
eugvuojsugvvrxeeusnoxgesluxouz_bjuzjgfoungogbsuojsupvomzbj_osugvuvgn
nsixnusfzsuzgeqlutxnuojxouojsuj_tpodjqeejsxlugvuj_tzsevupf_tpoeduzsnlzux
nu_nh_gfgniugnsurseeuoguojsurszouqnuh_szougvujqzuo_tpodo_togszuxnluojs
qfu_po_fnpqwspggnoxnlpexbsuqzuxouojsuwngbwug_ouqnuojsupxfwurjsfsugf
xniszujxksucssnuexqluoguf_zou_pgnuojsuifssnuzqnbsulskeqnzvqfzouegkslueq
kkdurjxoubexzjszujsfsugvurqeezuisnurgnozugdzofdiglzuixiiqgnuvqzjduiglzuct
SWWSWUWSWWSWUWSWWSWUWSWWsSWuwgxauwgxauwgxau_xe_u_xe_u_xe_uh_x
g_x_jurjsfsuojsucxllsexfqszupxfoqzxnzuxfsuzogeeug_ouogutxojtxzosfutxexbj_
zutgbifxnszuxnluojsuksflgnzubxoxpseoqniuojsubxtqexeqzogbzug_ougvuojsur
jgdoscgdbsugvujgglgsujsxluxzzqgsixoszuxnlucggtsfqnizofgtzuzgluzuctgglucsu
tsuvsxfuzxniegfqxnzuzxksuxftzuxpsxeurqojuexftzuxppxeeqniuwqeedwqeewq
eeduxuogeeuxuogeeurjxoubjxnbsub_llesdzurjxoubxzjsezuxqfsluxnluksnogexo
slurjxoucqlgtsogegkszuzqnl_bslucdurjxouosigosoxczgeksfzurjxouof_suvsseqni
uvgfuojsqfuzujxdxqfurqojurjxouzofxrniukggbsugvuvxezsumqbb_pugujsfsujsf
sujgrujgojuzpfgreslutsouojsul_zwouojsuvxojsfugvuvgfngbxoqgnqzozuc_ougut
duzjqngniuzoxfzuxnlucgldujgrujxojuvxnszpxnnslutgzoujqijujsxksnuojsuzwd
zqinugvuzgvouxlksfoqzstsnouc_ourxzuqyuqzs_ousfsursfsuzsrsfzuojsugxwzugv
uxelungruojsdueqsugnupsxoudsousetzuesxpurjsfsuxzwszuexdupjxeeuqvudg_
uc_ourgeeufqzsudg_ut_zouxnlungnsuzguzggnusqojsfuzjxeeuojsupjxfbsuvgfuo
jsun_nbsubgtsuoguxuzsolgrnuzsb_exfupjgsnqzjucditszosfuvgnnsixnugvuojsu
zo_oosfqniujxnluvfsstsnuzutx_fsfuegkslugnuojsucfgxlszourxduqgttxfignxcesuq
nujqzuf_zjeqouoggvxfexbwuvgfutszz_xiszucsvgfsumgzj xnum_liszujxluigksnu
_zun_tesfzugfujsekqogb _zubgttqoosluls_osfgngtdugnsudsxzodlxdujsuzosfnsed
uzof_awujqzuososuqnuxuo_cuvgfuogurxozbjuojsuv_o_fsugvujqzuvxoszuc_ous
fsujsuzrqvoeduzoggwuqoug_ouxixqnucduojsutqgijougvutgzszuojsuksfdurxosfu
rxzuskqpxfxosluxnluxeeuojsui_snnszszujxlutsouojsqfusagl zuzguojxoug_ijouo
guzjgrudg_urjxouxupsnozbjxnms_bjdubjxpujsurxzuxnlul_fqniutqgijoduglludsx
fzuojqzutxnugvujglubstsnouxnluslqvgbszugnuogpsfuzuojgfpupgesluc_gel niu
z_pfxuc_gel_niupgnuojsucxnwzuvgfuojsueqgksfzucduojsuzgxnizgujsuxllesueql
lesupjqvgsuxnngsu_iisluojsueqooesubfxdoj_furqojsfujxdfsugnujgnlzuo_bwu_p
udg_fupxfouqnjsfugvorjgesucxec_eg_zutqojfsuxjsxlurqojuiggleduofgrseuqnuif
xzpuxnlugkgfgqeslugksfxeezurjgbjujsujxcqoxb_exfeduvgnlzsslueqwsujxfg nu
bjqelsfgbusiiscsfojujsurg_elubxeqi_exosucdut_eoqpeqbxceszuojsuxeeoqo_lsux
nlutxeeoqo_lsu_noqeujsuzsszxrucdunsxoeqijougvuojsueqgh_gfurjsfsorqnuuorxz
ucgfnujqzufg_nljsxluzoxpesugvugojsfulxdzuogufqzsugnu_nlfszzutxqzgnfdu_p

24

zoxnlslumgdifxnoqouxurxxergfojugvuxuzwdsfzbxpsugvutgzousdsv_eujgdojus
nogrsfedusfqgisnxoqniuvfgtunsaouogungojqniuxnlubseszbxexoqniuojsujqtxez
uxnluxeeujqsfxfbjqosboqogpoqogpegvogbxeurqojuxuc_fngniuc_zjuxcgecugvvu
qozucx_cesogpuxnlurqojuexffgnzuguoggesfzubeqoosfqniu_puxnluogtceszuxuc
_bwsozubegoosfqniulgrnugvuojsuvqfzourxzujsuogucxfsuxftzuxnluxunxtsurxz
zxqeducggzexs_ijugvufqszsniscgfiujqzubfszougvuj_fgelfdugnuksfourqojuxnbq
eexfzuofg_cexnouxfisnouxujsigxwupg_fz_gkxnoujgffqlujgfnslujqzuzb_ozbj_tuv
szzslurqojuxfbjsfzuzof_niujseqgugvuojsuzsbgnlujggobjuqzuvgfuj _zexnltxnujx
nleqniujqzujgsujgjgjgjgutqzosfuvgqnnudg_fsuiggniuogucsutqzosfuvgnnxixqnu
bgtslxdutgftuxnlugudg_fsukqnsuzsnllxdzusksuxnluxjudg_fsukqnsixfujxjxjxjx
utqzosfuv_nnudg_fsuiggniuogucsuvgnsluxixqn

Appendix C. Python Code
Appendiz C.1. Data Mining

niumun

do data mining and obtain the one-point and two-point
statistics about the English
language, and then calculate
the likelihood function

nnn

import re

import numpy as np

import matplotlib.pyplot as plt

legal_chars = ’abcdefghijklmnopqrstuvwxyz ’
chars_to_index = {c:i for i, ¢ in enumerate(legal_chars)’}
index_to_chars = {i:c for i, ¢ in enumerate(legal_chars)}

def load_data(file=’pride-and-prejudice.txt’):
nimnn
load the data from the file remove all the punctuations
and make all the words
lower case, only leave
characters a-z and space

return: one long string
mnamnn

with open(file, ’r’) as f:
data = f.read()

25

to lowercase
data = data.lower ()
filter out white spaces

data = data.replace(’\n’, >)

data = data.replace(’\r’, ’)

data = data.replace(’\t’, ’>)

only keep the legal characters

data = ’’.join([c for ¢ in data if ¢ in legal_chars])
merge white spaces

data = re.sub(’ +’, ’ ’, data)

return data

def get_one_point_statistics(data):
miumn
get the one-point statistics about the English language
from input data
args:
data: a long string
return:
a dictionary with keys as characters and values as
the number of times

mnnn

get the frequency of each character

freq = {7}
for ¢ in legal_chars:
freqlc] = data.count(c)

get the total number of characters
total = sum(freq.values())
get the probability of each character
for ¢ in freq:

freqlc] /= total

make sure this is a probability distribution
assert abs(sum(freq.values()) - 1.0) < le-6

return freq

def get_transition_matrix(data):

nnn

get the transition matrix from input data
args:
data: a long string

26

def

if

return:
a matrix (indexing the transition probabilities
Q(x, y) is the probability of transitioning from x to

y

nnn

Q = np.zeros((len(legal_chars), len(legal_chars)))
count tuples
for i in range(len(data) - 1):
x = chars_to_index[datal[i]]
y chars_to_index[datal[i+1]]
Qlx, yl += 1
normalize
Q = Q / Q.sum(axis=1, keepdims=True)
make sure each row is a probability distribution
assert np.isclose(Q.sum(axis=1), 1.0).all()

return Q

visualize (freq, Q):

visualize the one-point frequencies and the tramnsition
matrix @

plt.imshow(np.array(list (freq.values()), dtype=np.float32
) .reshape((1, -1)), cmap=’
Blues’)

plt.colorbar(orientation="horizontal")

plt.xticks(range(len(freq)), list(freq.keys()))

plt.yticks([1, [1)

plt.show ()

plt.imshow(Q, cmap=’Blues’)

plt.colorbar ()

plt.xticks(range(len(freq)), list(freq.keys()))
plt.yticks(range(len(freq)), list(freq.keys()))
plt.show ()

plt.close ()

__name__ == ’__main__"’:

for debugging and plotting purposes
data = load_data()

print (len(data))

27

freq = get_one_point_statistics(data)
print (freq)
print (len(freq))

Q = get_transition_matrix(data)
print (Q)
print (Q.shape)

visualize (freq, Q)

Appendiz C.2. Metropolis Algorithm and Decoding

numun

this is where the magic happens. This file will decode the
message encoded by the
substitution cipher

mnn

import argparse

import random

import math

from copy import deepcopy

import matplotlib.pyplot as plt
import numpy as np

from data_mining import get_one_point_statistics,
get_transition_matrix, \
load_data, legal_chars, chars_to_index, index_to_chars

def load_encoded_message(file):

nnn

load the encoded message from a file into a long string
nann
with open(file, ’r’) as f:
data = f.read ()
return data

def swap_element (permutation):
nnn

swap the elements at index i and j in permutation

this swapped permutation is defined as a neighbor of the
current

permutation in the MCMC random graph

28

def

def

nnn

choose two indices to swap
i, j = np.random.choice(len(permutation), 2, replace=
False)

neighbor = list(deepcopy(permutation))
neighbor [i], neighbor[j] = neighbor[j], neighbor[i]
return ’’.join(neighbor)

energy_func (encoded_msg, one_point_stat, transition_mat,
permutation) :

nimnn

get the energy of a certain permutation

the energy is defined as the negative log likelihood

likelihood is P(permutation | encoded_msg)

nimnn

permutation_inverse = lambda b: legal_chars[permutation.
index (b)]

likelihood = O

liklihood of the first letter
likelihood += math.log(one_point_stat[permutation_inverse
(encoded_msg[0])])
likelihood of the rest of the transition pairs
for i in range(l, len(encoded_msg)-1):
X = permutation_inverse (encoded_msgl[i]),
y = permutation_inverse (encoded_msg[i+1])
x_idx, y_idx = chars_to_index[x], chars_to_index[y]
try:
likelihood += math.log(transition_mat[x_idx,
y_idx])
except :
transition probability is O
likelihood += math.log(le-16)
return -likelihood

mcmc (num_iters, beta, encoded_msg, one_point_stat,
transition_mat,
plot_save_path,
start_state=’abcdefghijklmnopqrstuvwxyz ’,
plot_every=1):

nnn

markov chain monte carlo

29

try to sample the correct permutation according to a
Gibbs distribution

make a plot of the energy of walk throught the random
graph, record the energy

every ‘plot_every ‘ iterations
nimnn

current_state = start_state

energy = lambda state: energy_func(encoded_msg,
one_point_stat,
transition_mat, state)

energy_list = []

start iteration
for i in range(num_iters):
print(f"iteration {il}")

record the energy
if i % plot_every == 0:
energy_list.append(energy(current_state))

choose a neighbor of current state uniformly at
random
next_state = swap_element(current_state)

accept or reject according to energy change
energy_diff = energy(next_state) - energy(
current_state)
if energy_diff < O:
current_state = next_state
else:
accept_prob = math.exp(-beta * energy_diff)
if random.random() < accept_prob:
accept
current_state = next_state
else:
reject
pass

plot the emnergy trajectory

plt.plot(plot_every * np.arange(len(energy_list)),
energy_list)

plt.xlabel (’Steps’)

plt.ylabel (’Energy’)

plt.title(’Energy of Walk Through Metropolis Graph’)

plt.savefig(plot_save_path)

30

def

def

return current_state

decode_message (encoded_msg, permutation, save_to=None):
nnn
decode a long string
args:

encoded_msg: a long string encoded by substitution

cipher

permutation: a 27-char string of all legal chars
return:

decoded_msg: a long string decoded by substitution

cipher
nimnn
permutation_inverse = lambda b: legal_chars[permutation.
index (b)]
decoded_msg = ’’.join(map(permutation_inverse,

encoded_msg))

save the result
if save_to:
with open(save_to, ’w’) as f:
f.write(decoded_msg)

return decoded_msg

main () :
nnn

put everything together

mnimnn

parser = argparse.ArgumentParser ()

parser.add_argument (’--data’, type=str, default=’pride-
and-prejudice.txt’, help=’
the file containing the
data of true English
language’)

parser.add_argument (’--code’, type=str, default=’f_45.txt
>, help=’the file
containing the encoded
message’)

parser.add_argument (’--save_path’, type=str, default=’
decoded.txt’, help=’the
file to save the decoded
message’)

31

parser.add_argument (’--beta’, type=float, default=1.0,
help=’the beta parameter
of the Gibbs distribution’
)

parser.add_argument (’--num_iters’, type=int, default=
100000, help=’the number
of iterations to run MCMC’
)

args = parser.parse_args ()

set random seed
random.seed (0)
np.random. seed (0)

load the code
encoded = load_encoded_message (args.code)

data mining on the true English language
true_language_data = load_data(args.data)

one_point_stat = get_one_point_statistics(
true_language_data)
transition_matrix = get_transition_matrix(

true_language_data)

run MCMC
final_permutation = mcmc(
num_iters=args.num_iters,
beta=args.beta,
encoded_msg=encoded,
one_point_stat=one_point_stat,
transition_mat=transition_matrix,
plot_save_path=args.save_path[:-4] + ’_energy.png’,
)

print (final_permutation)

decode the message

real_msg = decode_message (encoded, final_permutation,
save_to=args.save_path)

print (real_msg)

if name == 7 __main__":

main ()

32

