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Abstract

This paper considers two post-processing models based
on Inertial Measurement Unit (IMU) to enhance the accu-
racy of video object recognition on light-weight devices.
Videos are rich with temporal information, and IMU is a
cheap and accurate way of accessing it. The work combines
temporal information of IMU with two post-processing
models: 1) Intersection over Union model and 2) Kalman
Filter, both of which require small memory and low compute
time, making them an ideal choice for light-weight device.
A video data set with IMU data is collected and processed
using a popular classification CNN You Only Look Once
(YOLO). The recognition results are then passed on to the
above two models, and the results are compared to show
that IMU data can significantly increase recognition accu-
racy on both models.

Index terms — Inertial Measurement Unit, video
object recognition, post-processing, Intersection over
Union, Kalman Filter

1. Introduction

In recent years, object recognition on image has achieved
great success. Well-trained Convolutional Neural Networks
(CNNSs) can successfully detect objects in a single RGB
image and classify them with a high accuracy. However,
video object recognition is still a hard problem because of
motion blur, occlusion, etc. Recent approaches in dealing
with recognition on video mostly runs image object recog-
nition algorithm on every frame of the video [12]]. How-
ever, this could potentially be a very time-consuming task,
and can’t always operate in real time. More importantly, it
doesn’t take into account the inherent temporal information
of videos.

This paper proposes to capture that temporal informa-
tion with an Inertial Measurement Unit (IMU), a small elec-
tronic device that capture’s an object’s 3-axis linear accel-

eration and 3-axis angular velocity, and sometimes device
orientation as well as magnetic field strength. In a video,
the underlying temporal information suggests that objects
in one frame is most likely to be also in the next, with some
pixel movements. Using an IMU, one can use the camera’s
movement to predict how the objects will move in the video,
providing extra information to strengthen object recogni-
tion results. However, the use of IMU data to predict pixel
movements is predicated on the assumption that objects in
the video don’t have much movement. This is a reasonable
assumption for most indoor environments.

To make this work applicable for all object recognition
networks, the models are made to operate during the post-
processing process, and can take the result of any recogni-
tion network and strengthen it. Two primary models are
considered for this post-processing unit: 1) Intersection
over Union (IoU) model and 2) Kalman Filter (KF). IMU
information is incorporated with these two well-established
models. IoU is a geometrical way of calculating how
“close” two detected objects are, and IMU data is used to
achieve a more accurate IoU score, which is in turn used
to determine whether two “close” objects from adjacent
frames should be the same one in the real world. The recog-
nition confidence of an object detected in the previous frame
is bolstered, and that of an object seen for the first time in
a video is reduced. Kalman Filter, on the other hand, is
a Hidden Markov Model that uses observations over time
to smooth noise and inaccuracies. It is used in this pa-
per to capture the temporal information of videos to take
away abrupt changes in recognition confidences. A data set
of video is collected on a fish eye camera with its corre-
sponding IMU measurements. Since many of the current
image object recognition networks take a good deal of com-
puting time and compute power and can’t operate on ev-
ery frame of a video in real time, this work focuses on the
post-processing work of video segmented into 1 frame per
second. The low frame rate enables real-time video object
recognition even on devices with low compute power. The
1 fps video is first processed by a popular object detection



frame work You Only Look Once (YOLO) [12], then passed
on to the post-processing model. The results of the post-
processing model is then compared to results from YOLO,
showing a significant increase in accuracy. The use of IMU
make the result of a low frame rate video comparable to that
of a high frame rate one. It is also shown that IoU operates
better in smooth stable videos, while KF is better in dealing
with sudden changes in videos.

The remaining sections of this paper are organized as fol-
lows: Section 2 surveys related work on video object recog-
nition post-processing methods and on IMU usage. Section
3 describes the Intersection Over Union model and Kalman
Filter model, and how they can be combined with IMU
data. Section 4 presents the experiment methods and data.
Section 5 focuses on the experiment results, as well as re-
view and comparison of the two models. Section 6 serves
as the conclusion of the paper and points out direction for
future work. The code base of this paper is available at:
https://github.com/paulzhou69/object-recognition-imu

2. Related Work

The author did not find any related work done on using
the Inertial Measurement Unit (IMU) for the object recog-
nition problem. However, much work has been done on
improving object recognition with Kalman Filters / Hidden
Markov Models (HMMs) and the Intersection over Union
technique.

Inertial Measurement Unit There has also been use of
IMU in problems of 3D reconstruction and feature match-
ing [9], recognizing gestures [16]], and body poses [4].
However, this work is different from these previous work
in that it focuses on using the IMU specifically for the ob-
ject recognition problem.

Hidden Markov Models Kubala [8] has proposed a
HMM for temporal smoothing task for hand positions.
Many other works have also been done using HMM for
problems such as classification [2] [11] [4] and pattern
recognition [5] [15]. Hidden Markov Models are effec-
tive in these problems because they assume a stochastic
model of the world where some information isn’t directly
observable. Hornegger et al. [[7] have already attempted to
solve the object recognition problem using HMM combined
with affine invariant geometrical features. Bicego et al. [3]]
have also proposes an HMM-based approach to deal with
appearance-based 3D object recognition. This work is dif-
ferent in that it considers the 2D object recognition problem
using a specific kind of HMM: Kalman Filter.

Kalman Filter KF is really successful at combining dif-
ferent sources of data to make a more accurate estimate of
its real value. Besides estimating the value, it also keeps
track of its covariance matrix to represent its believability.
Alatise and Hancke [1] has developped a method to apply
Kalman Filter to IMU and vision data to estimate the pose

of a robot. The Kalman Filter model in this work operates
in a similar way but is used to solve the object recognition
problem. Rong et al. [13] has explored using an HMM to
regulate the Kalman Gain in Kalman Filters. The method
has shown promising results, but is outside the scope of this
work, which only considers a regular Kalman Filter with
unregulated gains.

Intersection over Union IoU is traditionally a way of
evaluating the performance of a object recognition network.
However, Han et al. [6] used it as a medium to find high-
scoring detections from nearby frames to boost those with a
low score. Although their method was effective in improv-
ing the performance in object recognition, it cannot operate
in real time. It also didn’t seek to make use of IMU data
to obtain a more accurate IoU score. In contrast, this work
presents an IMU-based IoU model that only looks at the
previous one frame in real time to boost detections with low
confidence.

3. Proposed Models: IoU and KF
3.1. Inertial Measurement Unit

Inertial Measurement Unit (IMU) is a small electronic
device that includes a gyroscope and accelerometer, and
sometimes a magnetometer. In this work, only the gyro-
scope and accelerometer data (3-axis angular velocity and
linear acceleration) is used.

By amounting an IMU to the camera, the movement of
the camera can be fully described by the IMU data. Since
the time between frame is relatively small, we can assume
that objects in the camera are still in the real world, es-
pecially in indoor environments, and the objects’ relative
movement to the camera is exactly the reverse of the cam-
era’s movement as obtained from IMU. This relative move-
ment data is available for every frame in the video and can
be used to calculate the displacement of objects detected
between two adjacent frames.

3.2. Intersection over Union

Intersection over Union, hereafter known as IoU, is a
commonly used metric of object detectors. Recent object
detector can generate a rectangular bounding box around a
detected object, and IoU is a mathematical formulation of
calculating how close two bounding boxes are. IoU of box
A and box B is computed as follows:

Area(AN B)
ToU(4, B) = Area(A U B) M
If IoU score is above 0.6, we say that two bounding boxes
are sufficiently close to each other.
In every frame, let B(t) = {b1,bi2,b:3,...} be the
set of bounding boxes detected at frame ¢. Each bounding
box by; is a list of full probability distribution over all the
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classes of objects the recognition network can recognize,
where each probability O; is a tuple with the confidence
b;; contains the jth class object, the x,y coordinates of the
center of the rectangular bounding box, and the width and
height of the box:

bii = [O11, 042,043, ..., Oun] 2
Ok = (Cti, (Tti, Yis Wei, M) 3)

where N is the total number of classes of objects recog-
nizable to the network. The object in bounding box b;; is
eventually defined to be in class k£ with probability c;j if
and only if ¢, = maz{ci1,cra,...,cin}

At frame ¢, the IMU measurement I; can be used to cal-
culate the displacement dx, dy as described in Section
In turn, the two displacement is applied to every class prob-
ability Oy, of all by, in B(¢):

;c = (Cka(xi+dxayi+dyawiahi))7Vk7i (4)

This yields a new set of bounding boxes, B’(t), after ad-
justing for displacement. B’(t) is actually a prediction of
B(t + 1) using B(t) and IMU data.

This prediction can be used to check the actual re-
sults B(t + 1) and, if the two correspond, enhance the
reliability of the result. For each bounding box b;; €
B/(t) and b(t+1)j S B(t + 1), if

10U (B3, bis11);) > 0.6 (5)

c(t+1yt Of O@tq1y in beyy1y; is increased, where [ is
the object class of b};. After the increase, bounding box
b(t+1); is defined to be in object class k iff ciry1yr =
max{c(t+1)1, C(t+1)2y-- -, C(t+1)N}

This increase process in then repeated for every frame ¢,
resulting in a sequence of increased detection result.

3.3. Kalman Filer

Kalman Filter (KF) is a special kind of Hidden Markov
Model (HMM) that is specially designed to take in a series
of noisy measurement over time and smooth the noise and
inaccuracies to output more accurate results. It repeats the
process of “predict” and “update” on the input data. For
a specific data point, the “prediction” phase uses that data
and the specified transition dynamic to predict the data at
the next time step. The “update” step then updates the real
data at the next time step with the predicted one, essentially
taking a weighted average of the two.

The underlying hidden state of the system is represented
by a vector x:

2 =[014,01p,034,09p,...,0Ona,Onp] (6)

where each O,,, O;; is the probability of object class ¢ as
defined in (3), and N is the total number of classes of ob-
jects recognizable to the network. Each object class occurs

twice in the state vector (with subscripts a and b) to allow
for any object class to appear for a maximum of two times in
a frame. If an object class is detected more than 2 times in a
frame, only the two with the highest confidence is incorpo-
rated in the state vector, while others are passed directly to
the output without going through the KF model. This limit
of maximum occurrence for each object class contribute to
a relatively small requirement of compute power and pro-
cessing time, while remaining highly effective for common
videos. Alongside z, the filter also keep a covariance matrix
P at every time step to represent the correctness of x

The transition dynamic of the state vector is modeled by
a transition matrix F'ign«10N:

1.2 0 0 ... 0
r_ o 1 0 ... 0 7
0 00 ... 1
1.2 ifi=1 d
where F;; = ne . mod 5 (8)
1 otherwise

Each index in z that represents confidences are multiplied
by 1.2 while all other indices stay the same. All the con-
fidence are increased by 20% at each time step since we
have reason to believe that an object detected in one frame
is very likely to also be present in the next frame. In addi-
tion, x is also affected by the input uy . at each time step
and a control matrix Bigns«an:

w = [de1a,dy1a, dz1p, dy1p, dToa, . . ., de e, dyns]
)
O 1.0 0 0 OO0 ... O
O 01 0 0 O0O0 ... 0O
B=|0 000001 .. 0 (10)
O 00 0 O0O0OO0O ... 0
L i |
where By; — 1 1fJf5LTJ727(zmod2)

0 otherwise

1)

Each dz;, dy; is the displacement calculated in Section [3.1]
for each class probability O;.

The prediction step of the KF is modeled by the follow-
ing equations:

x=Fx+ Bu (12)
P=FPF" +Q (13)

(), the process noise covariance matrix is the identity

Lonsion
The update phase is done by taking a weighted aver-
age of the prediction of = and the actual observation using



Figure 1. An example image from the video data self-recorded by
fish eye camera. YOLOV4 is able to recognize the classes “per-
son”, “backpack”, and various others in this picture.

Kalman Gain K as the weight:

S=HPH" +R (14)
K=PH'S™! (15)
r=x+ K(z— Hz) (16)

The measurement function matrix H and observation noise
covariance matrix R are both identity matrix /1on«10n, and
z is the observation vector.

By repeating the predict and update step at every frame
of the video, the Kalman Filter uses the temporal informa-
tion to increase the confidence of objects correctly detected
and lower those of falsely detected.

4. Experiments

The two models described in Section [3] are tested and
evaluated using the ImageNet ILSVRC2015 data set [14]],
a Vision-IMU data set by Ovrén and Forssén [10], and a
self-collected data.

A wide-angle fish eye camera (159° horizontal 127° ver-
tical angle of view) is used to record a video of an indoor en-
vironment, which is then segmented into 1 frame per second
images (See Figure|[T|for an example). Adafruit BNOO055, a
9 degree-of-freedom IMU, is used to record orientation, ve-
locity, and acceleration data. The data is then processed on a
Nvidia RTX2060 GPU using the popular object recognition
network YOLOv4 and the two post-processing models.

The detection results, the confidence of the objects de-
tected and their bounding box location, are recorded af-
ter the images have been processed by YOLO. The results
are then passed to the Kalman Filter and Intersection over
Union post-processing model separately, and both of the fi-
nal result are also recorded.

5. Results: Comparison and Analysis

The results of the data sets processed by YOLO, YOLO
+ Kalman Filter model and YOLO + Intersection over
Union model are saved respectively and compared.

10U - person confidence

Figure 2. The IoU model with IMU recognizing a “person” in a
video. The yellow line shows the IoU score at every frame. When
the IoU score is above the threshold (represented by the black
line), the confidence of the object gets increased from the origi-
nal YOLO output confidence in red to that in blue.

Performance of object recognition task is usually eval-
uated by its Average Precision (AP) score. The AP score
shows how an object recognition model does in terms of
its ability to pick up true positive items and disregard false
positives and false negatives. In this section, performance
of the two post-processing model is evaluated by AP score,
recognition confidences at every frame for every object in
video, and bounding box location of detected objects. In
this section, the AP score is calculated with regard to the
ground truth in a subset of the ImageNet ILSVRC2015 data
set [14].

The compute time of these two models are also recorded
and compared. Overall, both of the models operate suffi-
ciently fast to process low frame rate videos in real time.
The Intersection over Union model is especially fast, run-
ning at an average of 0.002 seconds per frame, while the
Kalman Filter runs at an average of 0.1 seconds per frame.

5.1. Intersection over Union model

The ToU model can effectively use bounding box loca-
tions to trace how the object moved throughout the entire
video. Because of this quality, it is very successful in using
information from the previous frame to boost detected ob-
ject confidences in the current frame. As in figure[2] the IoU
model is very effective at increasing the recognition confi-
dence of objects.

The data also shows that the Initial Measurement Unit
(IMU) greatly increases the IoU score for 1 frame per sec-
ond video sequences. For example, comparing the IoU
score in figure 2| (with IMU data) and figure[3|(no IMU data,
pure IoU model) shows an average increase of 50%, with
maximum increase at 150%. The increase in IoU score im-
mediately leads to a significant increase in the recognition
confidences.



10U - person confidence - no IMU

—— YOLO confidence

—— 10U model confidence
10U score

— 10U threshold

Figure 3. The IoU model without IMU recognizing the same “per-
son” as in figure 2] All notations are the same as the previous
figure. It’s is notable that the yellow line here is much lower that
that in figure 2] which leads to a much lower blue line.

Video [ YOLO AP | IoU AP

1 1.00 0.99
2 0.85 0.84
3 0.48 0.66
4 0.49 0.45
5 0.99 0.98
6 1.00 1.00
7 0.98 0.98
8 0.98 0.97
9 0.82 0.81
10 0.94 0.95
11 0.75 0.67
12 0.81 0.57
13 0.67 0.47
14 1.00 1.00
15 1.00 1.00

Table 1. Average Precision score of YOLO compared with YOLO
+ IoU.

By the design of the IoU model, its bounding box lo-
cation is the same as the detection algorithm’s (YOLO’s).
Therefore there is no change in the accuracy of bounding
box location.

Finally, the Intersection over Union model is formally
evaluated using again Average Precision scores. It is shown
that, similar to the Kalman Filter, the IoU model neither in-
crease nor decrease the AP score by more than 1% most
of the time. However, there are times where a huge in-
crease/decrease up to 30% - 40% is seen (see table [I])

However, it is found that the change in AP score is corre-
lated with the movement speed of the detected object with
regards to the video frame. When the object is barely mov-
ing, the AP score is more likely to decrease. When the ob-

Kalman Filter - book confidence

10 — YOLO confidence
—  KF model confidence

Figure 4. Recognition confidence of YOLO and the KF model of
a “book” in the video sequence. KF output confidence, in blue,
outperforms YOLO output confidence, in red, when “book” is de-
tected in some number of consecutive frames. KF output confi-
dence also smooth sudden drops in confidence that YOLO incor-
rectly predicts.

ject is moving in the frame, however, the AP scores tends
to stay the same or increase. This is because the IoU model
produces a number of false positives when the detected ob-
ject is staying still. For example, in the “person” example
above, when the “person” is staying still, the loU model will
output detection results for several “person”s because of its
overconfidence of the object “person” being in the video,
leading to false positives.

Overall, the Intersection over Union model is extremely
effective at increasing the detection confidence of true pos-
itives and producing more true positives. However, there is
also a danger of producing more false positive at the same
time, especially when the intended object is not moving.

5.2. Kalman Filter model results

The performance of KF is much similar to that of a noise
filter. It can effectively reduce the variance of recognition
confidences, so that sudden changes in recognition confi-
dence, such as those caused by noise and inaccuracies, will
be smoothed out. This is illustrated in the two examples in
Figure[5|and Figure ]

The bounding box location of YOLO and that of the
Kalman Filter model is also compared. It is shown that
when camera speed is relatively small, the two locations are
close to each other, but vary greatly when camera moves
rapidly, as shown in Figure 6]

Finally, the performance of Kalman Filter is evaluated
formally using Average Precision (AP). The AP score of
the Kalman Filter is almost always about the same as the AP
score of YOLO, with 1% fluctuations (See table . More-
over, the change in AP score is not affected by the move-
ment speed of the object in the video.

This AP score data shows that the Kalman Filter model
doesn’t outperform the original object-recognizer in terms



Figure 5. Recognition confidence of YOLO and the KF model of
a “bicycle” in the video sequence is in red and blue respectively,
and the speed of the camera is recorded in green. Recognition
confidence is very low for both when camera speed is large.

Figure 6. Location of bounding box of YOLO and KF. The xy
plane represents the X,y coordinates of the center of the bound-
ing box, and the z-axis is the frame number in the video. YOLO
bounding box location, in red, is close to the Kalman Filter bound-
ing box location, in blue, in the lower half when camera speed is
low, but diverge in the other half when camera speed greatly in-
creases.

of getting true positives and rejecting false positives. How-
ever, it is very effective in smoothing the confidence of the
object detected when there is much noise in recognition
confidence, and in increasing the confidence of the detected
object when the recognition confidence is already smooth.
The noise-canceling property of Kalman Filter also makes
it especially effective in dealing with objects that moves at
a high speed.

6. Conclusion

This work presents two post-processing models of video
object recognition using an Inertial Measurement Unit. The
two models can fit any existing object recognition network
and show great promise in boosting the recognition confi-
dences. It shows that an IMU is particularly effective at a
low frame rate of 1 fps, enabling the system to achieve a
result that’s comparable to a high frame rate, saving signif-
icant computing power and time.

Future work on this could be directed in several aspects.

| Video | YOLO AP | Kalman Filter AP
1 1.00 1.00
2 0.85 0.84
3 0.48 0.50
4 0.49 0.49
5 0.99 1.00
6 1.00 1.00
7 0.98 0.99
8 0.98 0.98
9 0.82 0.77
10 0.94 0.94
11 0.75 0.75
12 0.81 0.70
13 0.67 0.67
14 1.00 1.00
15 1.00 1.00

Table 2. Average Precision score of YOLO compared with YOLO
+ KF.

Firstly, a really big constraints on the two models in this
paper is that it assumes the objects in the video are mostly
not moving. Vision approaches such as optical flow could
be used to remove this constraint and allow the two mod-
els to generalize to more domains. Secondly, one could
consider methods to increase the true positive detections
and decrease false positives, which the two current mod-
els aren’t very good at. Thirdly, the two models could be
fused together for combined benefits.
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