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1 Introduction

This work explores the idea of "randomizing” in two contexts. Randomizing is the process
of modifying a system step by step until each state in the state space is equally likely to
appear with one modification. It means that a "random” state has such mathematical
unpredictability that it is independent of its initial state.

The problem of randomizing is extremely important in both the mathematical world and
the real one. Randomization is widely used in sampling works such as sampling for opinion
polls and statistical sampling in quality control systems. It is also widely used in many
computational algorithms, such as the Monte Carlo Method and the genetic algorithms, let
alone its applications in medicine, sports, politics, and so on. Therefore, it is of great interest
to dive deep into the theory behind the process of randomisation.

The remaining sections of this paper will be organized as follows: Section 2 will attempt
to solve the process of randomizing in the context of a random walk on a circle, using
knowledge from Information Theory and Markov Chains. Computer simulation is also used
to form and test out conjectures. Section 3 will address the the problem in the context of
shuffling cards, which can be seen as a more complicated random walk problem.

2 Problem 1: Random Walk on a Circle

2.1 Introduction: the problem

Take n points arranged on a circle. Suppose that a particle starts at a fixed position (one of
our points), and then moves right or left each with probability 1/4, or otherwise stays at the
same point. After a sufficiently long time, the position of the particle is essentially random,
which means that it is approximately equally likely to be at any place. What is this time,
and how is this equilibrium approached? What if one changes the basic probabilities?
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2.2 Randomizing through Entropy

One direction our team took was to translate the problem through the lens of information
theory. Our key insight was that to analyze this system, instead of sampling the circle at
different numbers of steps, it is equivalent to sample multiple circles once after the same
number of steps.

To set up the problem, we consider a circle with n nodes. We pick a node, label it node 1,
and label subsequent nodes by moving counterclockwise. A ball is set at node 1. The state
space describes all the positions the ball can occupy, with 0 indicating no ball in that position
and 1 indicating its presence. Thus we have: S = {(1,0,0,...,0),(0,1,0,...,0),...,(0,0,0, ..., 1)}.
We have n possible states. We define n Bernoulli indicator random variables, and write
X; =1 to denote a circle in state i (so the ball is on node ), and X; = 0 otherwise.

Now, consider nq statistically identical circles, whose states are described by ng random
variables {X7, Xs,..., X,,,}. We are interested in the proportion of circles that are in a
given state after k steps (k > n so the circle has a nonzero probability of being in any
state). Mathematically, this is p; = n—lox (number of circles in state i) = nio >0 Ly,=1. The
empirical distribution is then the vector p = (py, pa, ..., Pn)-

Then the probability of getting a certain empirical distribution is proportional to the
number of ways we can attain it, which we showed to be the following:

no!
(nop1)!---(nopy)!

P(p=p)xC(p) =

We also showed that lim,,, . n—lo logC(p) = —> "1, = pilog(pi) := H(p), where H is the
entropy. From this, we found out (but did not formally prove using Lagrange multipliers)
that the distribution that maximizes entropy is the uniform distribution p* = (£, 1,...,1).

Looking at the problem from this viewpoint allowed us to discover a new way of measuring
how close the system is to a random system: relative entropy. We measure how close the
empirical distribution is to uniform with this ”distance” pseudo-metric:

D(pllp) = pr log pr log(np,) = logn — H(p)

2.3 Randomizing through Markov Chains

The approach we ultimately went forward with was to view the system as a discrete Markov
chain. Since the probabilities for moving (counter)clockwise do not depend on past positions,
but only the current position, it is indeed a Markov chain. See for the construction of
the transition matrix. The Markov chain derived below is irreducible, since the system can
traverse the entire circle in either direction with a nonzero probability. It is also aperiodic in
the general case (see subsection, since there is a nonzero probability of the ball remaining
at its node, meaning the GCD of any period for the ball returning to its state has to be 1.
Thus, there exists a unique stationary distribution 7. The following section will show that
the system converges to this distribution.



2.4 Proof of Randomness

According to subsection we know that given a transition matrix of the Markov Chain of
this problem, the aperiodicity and irreducibility of the Markov Chain suggests that the state
vector will eventually reach an unique equilibrium. But in order for the equilibrium to be
considered “random”, one has to ensure that the equilibrium follows a uniform distribution.
This section will prove that random walk on a circle, with a non-zero probability of staying
and any probability of going left and right, will eventually have a random position.

Proof. Let the probabilities of going left, right, and staying put be denoted by L, R, S. Then,
we have

L+R+5=1 (1)

When the state vector & reaches equilibrium, it will not change when applied to the transition
matrix T.

ZxT =T, where T = (11,22, ..., Tp,), (2)
S L 0 0 0 0 R]
R S L 0 0 0 0

T_ 0O RS L O 0 O (3)

0o 00 00 ..S8
L 0 0 00 .. R

nn

Writing out equation in equations format gives:

Lz, — (L+ R)z; + Rz =0 (4)
Lzy — (L+ R)xg + Rxs =0 (5)
(6)
Lz,1 — (L+ R)x, + Rr; =0 (7)
When R = 0, the equations become:
L, — Lz, =0 (8)
Lz, — Lzs =0 (9)
(10)
Lz, 1 — Lz, =0 (11)
It is apparent that xr1 = xo =23 = ... =,

since x1+zo+ a3+ ... +x, =1
therefore z; =29 =235 = ... = 2, = —

This means that the final equilibrium vector x is of a uniform distribution, hence reaching a
state of “randomness”



When R # 0 We can rewrite this group of equations into:

L, — (L+ R)xy + Rey =0 (12)
L,y — (L+ R)z, + Rr; = 0 (13)
Lx; — (L + R)xipq + Rejpp = 0 for i = 1,2,3,...,n — 2 (14)

First we focus on the equation
Lz; — (L+ R)xjs1 + Rri o =0fori=1,2,3,....m — 2 (15)

A difference equation can be constructed to solve for this equation:

L—(L+RMN+RN\N=0 (16)
We have: I
)\1:1,)\2:§ (17)
When L # R, the solution to equation is
) ) L.
T, = AN+ BN = A+ (}—%)H for A,B €R (18)
Plug in the results in into equation and , we have
Li
B(Ri—l —L)=0 (19)
Lz‘
B(L — Riil) =0 (20)

Since the above two equations have to hold for all values of 7, we come to the conclusion that
B=0
Plug this back in to equation, we have the final solution

x;=Afori=1,2,3,....,n (21)
ST =T =Tz = ... = Ty,
it retrs+ ...+, =1
1
S =T =3 = ... =Ty = —
n

When L = R, the solution to the difference equation is
x;=A+ Bn (22)

Similar to the L # R case, this also gives
1

T1 =Ty =3 = ... =Tp = —
n

So, in conclusion, the unique equilibrium state of & is the uniform distribution.



2.5 Computer Simulation & Data Analysis
2.5.1 Simulation

We first take in the number of points on the circle n, the probabilities of going left L, right
R, and stay S, and the tolerance of error € we are to bear. Then we randomly pick a starting
point, going around the circle, and use an n-dimensional row vector Z to represent all the
probabilities of the particle’s presence at that specific point. Provided the equilibrium is not
yet reached, we will continue to right-multiply the current vector of probabilities & by the
transition matrix T . When the equilibrium is reached, we record the number of points on
the circle n, the number of steps N the randomization takes, the three probabilities L,R,S,
and e . The Matlab code and data (in .csv format) can be viewed in the matlab_sim directory
in our code base repo.
The pseudocode for probleml is the following:

Algorithm 1 Problem1 Simulation

Require: n(number of points), ¢(upperbound of steps), probabilities Ip, sp, rp, error e
Ensure: n € N and Ip, sp,rp,e € (0,1)

Construct the transition matrix M using Ip, sp, rp

Construct the row vector v = (1,0, ...,0)

count = 0 (record number of steps taken)

while not random and count < t do

Update v: v+ v-M

end while

record the value of count

ouput .csv file

Since we do not expect the equilibrium to be where all the inputs of the row vector Z to
be exactly the same when represented as a float in a computer program, we come up with
the following definition of equilibrium:

2.5.2 Definition of Equilibrium

For a tolerance € € (0,1),

max |r; — —| <€
1<i<n n

2.5.3 Data Analysis

We first discuss the relationship between the number of points n and number of steps N. We
stick with the base probabilities: %L for left and right, respectively, and % for staying. We set
the error to be 5107, and calculate the number of steps N from n = 1 to n = 1001, step
size equals 10. The data is available [at Appendix 5.]]

After plotting the data on a graph, we have to find the function that fits the best.
Considering its fast growth, we attempt to fit it with an exponential function N = a - e, |

or a power function N = a - n’, where parameters a,b € R.
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Figure 1: Source of data: BUMP-code/matlab_sim/data3.csv
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Figure 2: Plotting: BUMP-code/datal _plotting.ipynb

By the plotted data in [figure 2| we can conclude that N follows a power growth of n.

Then we shift our attention to the relationship between the tolerance of error ¢ and
number of steps N, still sticking with the base probabilities }L, i, % Yet this time, we hold n
as a constant (36/24/15/12, whereas n = 36 shows the greatest difference), and manipulate
the value of € from 2-10° to 104, step size equals 2-10°5. Intuitively, we would expect larger
N for smaller e. We come up with two types of functions: a multiplicative inverse N = = or
a logarithmic function N = a - log(b), where parameters a,b € R. The data for the following
graphs can be found at Appendix 5.2

In [figure 4], both functions fit the data to some extent. However, if we pay attention to the
mean square error of the fitting functions respectively, the MSE of a logarithmic fit is much

smaller than that of an inverse fit. It suffices to show that N follows a logarithmic growth of e.
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Figure 3: Source of data: BUMP-code/matlab_sim/data_e_N_6.csv

the parameter a, b are: [1.31266996e+02 1.20063940¢-01] the parameter a, b are: [-131.09130582 -378.10486345]
the standard deviation of a, b are: [1.57018589e+00 1.14826442¢-03] the standard deviation of a, b are: [0.04277764 8.43594231]
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Figure 4: Plotting: BUMP-code/epsilon_plotting.ipynb

However, it is noteworthy that all the above graphs and discussions are predicated upon
the assumption that L = R (symmetric). In cases where L # R (asymmetric), convergence
to randomness may take a different time, compared with the symmetric cases where L =
R = % In the following figure, we fix n = 36, and plot the logarithmic fits of L = R = }1
and L = %, R = % respectively. The data for the symmetric case is referred to in the previous
discussion; the data for the asymmetric case can be viewed |at Appendix 5.3|

It is clearly shown in that asymmetric probabilities would lead to delayed con-
vergence to randomness. Hence, we come up with the first conjecture from problem 1.

2.6 Conjectures from the Problem

According to numerical simulation, we found that the convergence time to random is longer
if L # R,S # 0. This leads us to the following conjecture:

Conjecture 1. The location of the particle on the circle converges to random distribution
the fastest when the probabilities of going left, right, and staying put are all %
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Figure 5: Source of data: BUMP-code/matlab_sim/data_e_N_6.csv,
BUMP-code/matlab_sim/data_e N _8.csv

2.7 Exception: when the probability of staying is zero

There exist cases when the probability of staying, S = 0, while neither left nor right proba-
bilities L & R is zero (L - R # 0).

In the first place, we index all the points on the circle from 1 to n, and record the current
probability at each point to be p;. What we do is putting all the probability, 1, on the 1st
point initially. When t=1, p; = 0, p,, and ps is positive (I just list the points on which changes
take place, for simplicitys sake, as the rest probabilities are zero). When t=2, p, = py = 0,
while py, p3, pn—1 are all positive. We can observe a pattern: when t is even, the probabilities
on all odd-indexed points are nonzero, and vice versa.

If we model it as a Markov Chain problem, and suppose, for example, L = R = %, n =4.

0 05 0 05

05 0 05 0

The transition matrix P, is: . We can diagonalize it by Py = SJS!

0 05 0 0.5
05 0 05 O
100 0 (=1) 0 0 0
(J being diagonal). J turns out to be 8 8 8 8 ,and J' = 8 8 g 8 We also
0 001 0 0 01
know that P, = SJ'S!, so the distribution will oscillate between two states without ever

converging.



3 Problem 2: Random Shuffling of Cards

3.1 Introduction: the problem

Start with a deck of n cards, arranged in a circle on the table. At every turn, we either
take two adjacent cards and swap them, or else do nothing. How often does this have to be
repeated until the ordering of the cards becomes approximately random? How about other
shuffling methods (such as exchanging two randomly chosen cards in arbitrary position)?

3.2 Modeling the Problem & Markov Chain Representation

Since all n cards are in a circle, the number of possible configurations of them should
be (n — 1)!. Take n = 4 as an example. We have 6 distinct states: sample space S =
{(1,2,3,4),(1,2,4,3),(1,3,2,4),(1,3,4,2),(1,4,2,3), (1,4, 3,2) }.The key is to note that each
group of states has exactly one element that starts with 1.
We now apply the following ordering of all the configurations when n = 4:
1. All elements of S begin with 1, so we move to the second position, so we
move to the second card (starting with card 1).
2. Two elements have 2 in the second position: (1,2,3,4) and (1,2,4,3).
Since for the third card 3 < 4, we call (1,2,3,4) state 1 and (1,2,4,3) state 2.
3. Two elements have 3 in the second position: (1,3,2,4) and (1,3,4,2). We
call (1,3,2,4) state 3 and (1,3,4,2) state 4 for the same reason.
4. Two elements have 4 in the second position: (1,4,2,3) and (1,4,3,2).
Similarly, we call (1,4,2,3) state 5 and (1,4,3,2) state 6.
Thus we have a way to number the states for any n; this method also ensures that (1,2,...,n)
is always state 1, represented by a row vector (1,0,...,0). We also constructed the transition
diagram among the states.

'e

Figure 6: Transition Diagram of Configurations, n=4

If we have a probability p € [0, 1] to swap two cards and the probability of doing nothing



is (1 — p), we can write the transition matrix:

Similarly, we can write the transition matrix for n = 5:

"
0.25p
0.25p
0.25p
0.25p

0

0.25p
IL—p
0.25p
0
0.25p
0.25p

0.25p 0.25p
0.25p O
1—p 0.25p
0.25p 1—p
0 0.25p
0.25p 0.25p

1-p p/5 p/5 0O 0 Op/S O Opfs 0O 0 0 O O
p/51p O Op/S O Op/S O O Op/sp/s5 0 O
pfs 01-p p/s 0 0 o0 o o o 0 0 p/s o0 o
0 Opfs 1p Op/Sp/5 0O O O O O Op/s O
0 p/fs 0 01lp pfs 0 0 0 O O O o0pfs 0
0 0 Op/fSp/S5S1p Op/S 0 0O O O O O O
p/5 O Op/S O O1pp/5p/5 O O O O O O
0 p/s 00 0 OpfS pfs 1-p 0 O0p/fs 0 0 opfs
0 0 0 O O Op/sS O01p pfs 0 0 O0pfs pfs
p/5 0 0O O 0 O 0 Op/f51p Op/5sS O O O
0 0 0 0O 0O O oOpf5 0 01l-p pfs 0O 0 O
Op/S O O O O O O Op/Sp/S1p ©O O O
0 p/5 pf5 O 0 0 O o0 0 0 0O 01p p/s p/5
0 0 Op/SPsS 0 O Op/5 0 O Op/S1p O
0 0 0 O O O Opfs ps 0 0 O0pf5 01-p
0 Op/5 0O O O O O Op/fse/s 0O O Opfs5
0 0 O 0 0 0O 0 0 op/fs 0 0 0 p/5 0
0 0 Opfs 0 0 0 o o o 0 0 o 0o O
p/s O O Op/S O O O O O O O O0 O O
0 Op/5S O Op/5 O O O Op/s O O O O
0 0 0 0 O Op/S O O Op/S O O O O
o0 0o O 0 p/s 0 0 0 p/5 0 0 p/5 0O 0o O
0 0o O 0 0 0O 0 o0 o o 0 p/S p/5 o0 0
| 0 0 0 O oOp/S O O O O O O O Opfs

Figure 7: Transition Matrix when n=>5
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We also have a matlab file for generating the transition matrices for larger n’s. See the
file at: BUMP /card TransitionMatrixScript.m
Note that these matrices are irreducible (look at the [transition diagraml). They are also
aperiodic for the same reason the circles with nonzero probability of stay put were in [problem]
This means that there is a unique stationary distribution and we will reach it.

3.3 Computer Simulation & Data Analysis

3.3.1

Remodeling

Unlike problem 1, it is computationally expensive to model problem 2 using the transition
matrix put forward in the [Markov Chain Representation| A possible way to walk out this

10



plight when programming is to just swap the two elements in a list (or an array). We also
take on the strategy of defining the configurations as numbers starting with 1 (card 1), and
store them in a hashmap as keys ((n—1)! entries in total, still very computational expensive,
yet better than a (n — 1)! by (n — 1)! matrix multiplied at each step. The values of a key is
the number of times we observe at the end of each step.

The pseudocode for this simulation is as following:

Algorithm 2 Problem2 Simulation

Require: n(number of cards), pofs(prob of swap, t(upperbound of steps), error e
Ensure: n € N and pofs,e € (0,1)
list all the permutations of numbers 1 to n starting with 1 in list p
use the permutations in p as keys to make hashmap pmap
counter = 0 (record number of steps taken)
while not random and counter <t do
choose two cards (this differs in adjacent and random cases)
randomly generate prob € (0, 1)
if prob < pofs then
swap cards (this differs in adjacent and random cases)
update current card configuration
end if
update the value of corresponding configuration in pmap
counter + +
end while
record the value of counter
ouput .csv file

3.3.2 Definition of Equilibrium

If we define equilibrium absolutely, i.e. each configuration should appear no more/less than
x times (z € N) than the supposed times ﬁ, where t is the number of steps we take, we
would find it nearly impossible to reach equilibrium when n is really large (because we have
to set x larger correspondingly).
Therefore, we come up with our relative definition:

For a tolerance € € (0,1),

| t < €-t
max |z; —
1<i< (n—1)! (n—1!"  (n—1)!

where t is number of steps taken prior to when the equilibrium is checked.
Note: € is denoted as e in our data in Appendix 5.4 - 5.7.

3.3.3 Data Analysis

In this section, we used Monte-Carlo Method to acquire our data in Appendix 5.4 through
Appendix 5.7 by sampling 1000 times for each € when n = 4.

11



To begin with, we set the probability of swapping two adjacent cards (random swapping
will be discussed later) at each step to be % We let n = 4 and carry out simulation for e
from 0.10 to 0.01, step size equals —0.01, and the data for the base simulation is It
is intriguing to observe that the product of the square of ¢ and the number of steps taken
to be approximately a constant ¢ € (17,19), which implies a relationship of multiplicative

inverse between the two parameters.

The data is plotted here, and the source of which is at [Appendix 5.4
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Figure 8: Source of data: BUMP-code/card_sim/epsilon_t.csv
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Figure 9: Plotting: BUMP-code/card_sim/plotting.ipynb

Comparing the standard deviations and mean square errors of the coefficients of the two
potential fits, we can conclude that an inverse fit is better. Our next question is how, if
possible, the number of steps required for us to arrive at the equilibrium would be affected
by the probability to swap or not at each step, when the method of swapping stays unchanged
(only swap two adjacent cards). In addition to p = 0.5, we also collected data for p = 0.3
and p = 0.7, where the number of cards n = 4 and error € goes from 0.1 to 0.01, with step
size —0.1. The data for p = 0.3,0.7 can be viewed [at Appendix 5.6 & 5.7}, and is plotted in

12
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Figure 10: Source of data: BUMP-code/card_sim/epsilon_t.csv,
BUMP-code/card_sim/epsilon_t2.csv, BUMP-code/card_sim/epsilon_t3.csv

Figure 10 portrays the speed of convergence to e for different probabilities of swapping
while holding n constant, there is evidence showing that the smaller the probability of
swapping, the slower the speed for us to arrive at equilibrium.

We also need to account for the influence the method of swapping may have on the
randomizing process. Hence, we collect data and control n = 4,p = 0.5. By plotting and
comparing it with what we get when the swapping is adjacent, we observe no significant
difference in the data, which implies that adjacent and random swapping would result in the
same order of magnitude.

nl n=4, p=0.5, comparison of adjacent & random swap
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Figure 11: Source of data: BUMP-code/card_sim/epsilon_t.csv,
BUMP-code/card_sim/epsilon_t1.csv

3.4 Conjectures from the problem

Considering the data we get for different values of p, we think that p determines the rate
of randomization to some extent. Greater p renders more frequent shuffling. Therefore, we
come up with this conjecture intuitively:

Conjecture 2. Suppose we have an array A with finite number of elements and randomize
by exchanging the elements at different steps. Then the speed of randomization is indepen-
dent of the choice of elements, but depends on the probability of exchanging the elements
at each step. The greater the probability, the faster A will be randomized.
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4 Conclusion

From the two problems discussed in previous sections, it is proved that we would finally arrive
at a complete randomization after a fair amount of time (or steps), regardless the method of
conducting the randomization process (shown in[problem 2). The factors contributing most
to speed of randomization are (i) the number of elements to randomize (ii) the selection of
error we choose for each context.

1. The elements to randomize. In problem 1, we plotted the data to suggest a power
growth of the number of steps required N to the number of elements n, approximated by
the function N = 2.0176 - n*7%62,

2. The selection of maximum error € chosen for each context. In the first problem, we
calculated the likelihood of a point on each of the n points around the circle, and compared
the likelihood on each point with the expected value % The tolerance € we can bear is
measured in terms of probability. We find that N grows logarithmically with respect to e.
Yet in problem 2, we do not calculate the real probability of each configuration of cards
since this method is too computationally expensive. Instead, we used Monte-Carlo Method
(MCM) to conduct 1000 independent computer simulations for each pair of (N, e€). Rather
than probability, we measured € in proportion to the number of expected observations given
the number of steps already taken. The data we collected using this method suggests mul-
tiplicative inverse relationship between N and e.

The reason that the best fitting functions we get from the two problems are different may
be: (a) the data we collected are insufficient (b) more generative measurement of tolerance
of error for checking equilibrium should be defined. Precise probabilities are more mathe-
matically persuasive, yet it is more practical to record observations by running numerous
random samples and compare our observations with our expected results.

Despite the discussion above, it should be agreed upon that the Markov Chain Theory is
particularly important in randomization problems, as it assumes a stochastic model of the
world. Its formulation of the process of randomizing allows us to devolve nearly all problems
into those of linear algebra, which can be solved on a computer even for large scale problems.

Future work on this could be directed in one of several aspects: Firstly, the foundational
theory in both of the problems explored in this paper could be strengthened. There re-
mained many interested properties to be discovered and conjectures to be proved. Secondly,
one could take the problem of randomizing to a more applied aspect. The substitution
cypher problem, for example, could be an interesting entry point to examine how the pro-
cess of randomization could be used in decyphering encoded messages. Thirdly, it would be
interesting to explore the generalization of these two problems.
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5 Appendix

The code base of this work can be found at https://github.com/11iu58b/BUMP-code.

5.1 Problem 1, Data 1

n [ | =] g sp [=3 n [ | [['s] rp S e
7 0] 025 03 0.5 500E-05 Bl 1TB=60 025 025 0.5 & O0E-O5
1 100 0,25 03 05 500E-05 521 119330 025 025 05 500E-05
21 337 025 03 05 500E-05 531 123470 025 025 05 5.00E-05
ey 697 025 02 05 500E-05 E41 127510 025 025 05 EBO0O0OE-0O5
41 72 025 03 05 500E-05 551 131810 0.25 025 05 500E-05
a1 1756 025 03 05 500E-05 EG1 138060 025 0.25 05 5.00E-05
E1 2445 0z5 03 05 500E-05 E71 140370 025 0.25 05 500E-05
1 3235 025 03 05 500E-05 B2l 144740 025 026 05 EOOE-O5
a1 4122 025 03 05 500E-05 591 149150 025 025 05 500E-05
M =106 028 032 05 500E-D5 601 153640 025 025 05 5.00E-05
11'311 ?;?129 ggg g-g g-g g-ggg-gg Bl 1BE170 025 025 05 BODE-O5
: : : - 621 162750 025 025 05 500E-05
=1 805 025 03 05 500E-05 61 167390 025 025 05 S500E-05
131 3348 025 03 05 500E-05 E41 172090 025 025 05 5O0E-O5
41 m3IFe 025 0.3 0.5 S.00E-05 E51 176220 025 025 05 500E-05
151 12889 025 02 05 SO00E-05 : : y :
651 19530 025 025 05 5.00E-05
151 14484 025 0.3 05 S00E-0% 71 136480 025 025 06 &NOOE-O5
171 18181 025 02 05 S00E-05 : : : :
621 191330 025 025 05 500E-05
' 148l 0es 0F o 05 S.00E-05 §91 195350 0.25 025 05 500E-05
131 19754 025 03 05 S00E-05 701 201350 025 025 05 500E-05
201 21EES 025 0.2 05 S00E-05 : : - : )
71 208420 025 025 05 EOOE-O5
211 23858 025 0.3 05 500E-05 721 21530 025 025 05 500E-05
3%1 gggég g%g gg g'g gggg:gg 731 2IEE90 025 025 05 5.00E-05
541 suns2 D25 02 05 EOOE-O5 FA1 22900 025 025 05 BO0O0OE-0O5
' . : ~ 7H1 22FIF0 025 025 05 5.00E-05
33} §§$§; 332 3-3 3-2 E'SSE_SE TE1 232400 025 025 05 5.00E-05
) : y FF1 237040 025 025 05 BOOE-OR
271 IFIES 025 03 05 S00E-05
551 =9EES 095 0= 05 5O00E-05 781 243z60 025 025 05 500E-05
591 47942 095 0= 05 5OOE-O5 7491 248720 025 025 05 5.00E-05
301 44885 095 03 05 5O0E-0O5 g0l 264230 025 025 05 BOOE-O5
=1 AFROE 025 0.2 05 S00E-05 1=l 289790 025 025 0.5 5.00E-0%
a7 E037E 025 0.2 05 S500E-05 221 265400 025 0.25 0.5 5.00E-05
231 53223 025 032 05 S00E-05 231 271080 025 025 0.5 B.OOE-0O5
a4 55137 025 0.2 05 S500E-05 =241 27EVYEOD 025 0.25 0.5 B.OOE-0O5
251 59117 025 02 0.5 500E-05 251 232520 025 0.25 0.5 5.00E-0%
261 E2162 025 0.2 05 S500E-05 251 288320 025 0.25 05 BO00E-05
371 BE2T3 025 02 08 500E-0O5 271 294970 026 025 05 BODE-O5
381 GB445 025 03 05 S.O00E-05 881 3200060 025 025 05 E500E-05
291 FIESY 025 03 05 SO00E-05 g91 306010 025 025 05 S5.00E-05
401 74955 025 02 05 SO00E-05 ol 2O00 025 025 05 BO0OE-05
411 78354 025 0.3 05 500E-05 911 318030 025 025 05 500E-05
421 giFez 025 0.2 05 SO00E-05 gz  Sz470 025 025 05 S5.00E-05
4731 85271 025 03 05 S00E-05 g3 330240 025 025 05 BOOE-O5
441 gEE22 025 02 05 SO00E-O5 941 33B420 025 025 05 50O0E-05
451 92434 025 03 05 S00E-05 951 242540 025 025 05 S5.00E-05
461 9805 025 02 05 SO00E-05 a51 249000 025 025 05 BOOE-O5
471 998935 025 03 05 SO00E-05 971 35210 025 025 05 500E-O05
421 W02E30 025 02 05 SO00E-05 981 361570 025 025 05 500E-05
431 107480 025 03 05 500E-05| 991  3EF9F0 025 025 05 S5.00E-05
501 111390 025 0.3 05 S.00E-05 1001 574410 025 0.25 0.5 5.00E-05
(a) n=1 to n=501 (b) n=521 to n=1001

Figure 12: Source: BUMP-code/matlab_sim/data3.csv
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5.2 Problem 1, Data 2

n N Ip rp sp e n N Ip rp sp e

36 1342 0.25 0.25 0.5 2.00E-06 36 915 0.25 0.25 0.5 5.20E-05
36 1251 0.25 0.25 0.5 4.00E-06 36 910 0.25 0.25 0.5 5.40E-05
36 1198 0.25 0.25 0.5 6.00E-06 36 905 0.25 0.25 0.5 5.60E-05
36 1161 0.25 0.25 0.5 8.00E-06 36 901 0.25 0.25 0.5 5.80E-05
36 1131 0.25 0.25 0.5 1.00E-05 36 896 0.25 0.25 0.5 6.00E-05
36 1107 0.25 0.25 0.5 1.20E-05 36 892 0.25 0.25 0.5 6.20E-05
36 1087 0.25 0.25 0.5 1.40E-05 36 888 0.25 0.25 0.5 6.40E-05
36 1070 0.25 0.25 0.5 1.60E-05 36 884 0.25 0.25 0.5 6.60E-05
36 1054 0.25 0.25 0.5 1.80E-05 36 880 0.25 0.25 0.5 6.80E-05
36 1040 0.25 0.25 0.5 2.00E-05 36 876 0.25 0.25 0.5 7.00E-05
36 1028 0.25 0.25 0.5 2.20E-05 36 872 0.25 0.25 0.5 7.20E-05
36 1016 0.25 0.25 0.5 2.40E-05 36 869 0.25 0.25 0.5 7.40E-05
36 1006 0.25 0.25 0.5 2.60E-05 36 865 0.25 0.25 0.5 7.60E-05
36 996 0.25 0.25 0.5 2.80E-05 36 862 0.25 0.25 0.5 7.80E-05
36 987 0.25 0.25 0.5 3.00E-05 36 859 0.25 0.25 0.5 8.00E-05
36 979 0.25 0.25 0.5 3.20E-05 36 855 0.25 0.25 0.5 8.20E-05
36 971 0.25 0.25 0.5 3.40E-05 36 852 0.25 0.25 0.5 8.40E-05
36 963 0.25 0.25 0.5 3.60E-05 36 849 0.25 0.25 0.5 8.60E-05
36 956 0.25 0.25 0.5 3.80E-05 36 846 0.25 0.25 0.5 8.80E-05
36 950 0.25 0.25 0.5 4.00E-05 36 843 0.25 0.25 0.5 9.00E-05
36 943 0.25 0.25 0.5 4.20E-05 36 840 0.25 0.25 0.5 9.20E-05
36 937 0.25 0.25 0.5 4.40E-05 36 837 0.25 0.25 0.5 9.40E-05
36 931 0.25 0.25 0.5 4.60E-05 36 835 0.25 0.25 0.5 9.60E-05
36 926 0.25 0.25 0.5 4.80E-05 36 832 0.25 0.25 0.5 9.80E-05
36 920 0.25 0.25 0.5 5.00E-05 36 829 0.25 0.25 0.5 0.0001

(a) € from 2-10C to 5107 (b) € from 5.2 - 107 to 107

Figure 13: Source: BUMP-code/matlab_sim/data_e_N_6.csv
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5.3 Problem 1, Data 3

n N Ip m sp e n N Ip m sp e

36 1421 0.333333 0.166667 0.5 2.00E-06 36 969 0.333333 0.166667 0.5 5.20E-05
36 1325 0.333333 0.166667 0.5 4.00E-06 36 964 0.333333 0.166667 0.5 5.40E-05
36 1269 0.333333 0.1e6667 0.5 6.00E-06 36 959 0.333333 0.166667 0.5 5.60E-05
36 1229 0.333333 0.166667 0.5 8.00E-06 36 954 0.333333 0.166667 0.5 5.80E-05
36 1198 0.333333 0.166667 0.5 1.00E-05 36 949 0.333333 0.166667 0.5 6.00E-05
36 1173 0.333333 0.166667 0.5 1.20E-05 36 944 0.333333 0.166667 0.5 6.20E-05
36 1151 0.333333 0.166667 0.5 1.40E-05 36 940 0.333333 0.166667 0.5 6.40E-05
36 1133 0.333333 0.1e6667 0.5 1.60E-05 36 936 0.333333 0.166667 0.5 6.60E-05
36 1116 0.333333 0.166667 0.5 1.80E-05 36 931 0.333333 0.166667 0.5 6.80E-05
36 1102 0.333333 0.166667 0.5 2.00E-05 36 928 0.333333 0.166667 0.5 7.00E-05
36 1088 0.333333 0.166667 0.5 2.20E-05 36 924 0.333333 0.166667 0.5 7.20E-05
36 1076 0.333333 0.166667 0.5 2.40E-05 36 920 0.333333 0.166667 0.5 7.40E-05
36 1065 0.333333 0.1e6667 0.5 2.60E-05 36 916 0.333333 0.166667 0.5 7.60E-05
36 1055 0.333333 0.166667 0.5 2.80E-05 36 913 0.333333 0.166667 0.5 7.80E-05
36 1045 0.333333 0.166667 0.5 3.00E-05 36 909 0.333333 0.166667 0.5 8.00E-05
36 1037 0.333333 0.166667 0.5 3.20E-05 36 906 0.333333 0.166667 0.5 8.20E-05
36 1028 0.333333 0.166667 0.5 3.40E-05 36 Q02 0.333333 0.166667 0.5 8.40E-05
36 1020 0.333333 0.1e6667 0.5 3.60E-05 36 899 0.333333 0.166667 0.5 8.60E-05
36 1013 0.333333 0.166667 0.5 3.80E-05 36 895 0.333333 0.166667 0.5 8.80E-05
36 1005 0.333333 0.166667 0.5 4.00E-05 36 893 0.333333 0.166667 0.5 9.00E-05
36 999 0.333333 0.166667 0.5 4.20E-05 36 889 0.333333 0.166667 0.5 9.20E-05
36 992 0.333333 0.166667 0.5 4.40E-05 36 887 0.333333 0.166667 0.5 9.40E-05
36 986 0.333333 0.1e6667 0.5 4.60E-05 36 383 0.333333 0.166667 0.5 9.60E-05
36 980 0.333333 0.166667 0.5 4_80E-05 36 881 0.333333 0.166667 0.5 9.80E-05
36 974 0.333333 0.166667 0.5 5.00E-05 36 878 0.333333 0.166667 0.5 0.0001

(a) € from 2-10C to 5- 107

Figure 14: Source: BUMP-code/matlab_sim/data_e_N_8.csv
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5.4 Problem 2, Data 1

n p e avg_steps ef2* avg steps
4 0.5 0.1 1845.093 18.45093
4 0.5 0.09 2425.962 19.6502922
4 0.5 0.08 2908.035 18.611424
4 0.5 0.07 3993.81 19.569669
4 0.5 0.06 5119.66 18.430776
4 0.5 0.05 7543.809 18.8595225
4 0.5 0.04 11337.57 18.1401072
4 0.5 0.03 21829.74 19.6467669
4 0.5 0.02 45140.62 18.056248
4 0.5 0.01 172250.9 17.2250852

Figure 15: Source: BUMP-code/card_sim/epsilon_t.csv

5.5 Problem 2, Data 2

n P e avg_steps efr2 * avg steps
4 0.5 0.1 1735.32 17.3532
4 0.5 0.09 2349.801 19.0333881
4 0.5 0.08 3027.001 19.3728064
4 0.5 0.07 3731.818 18.2859082
4 0.5 0.06 4941.687 17.7900732
4 0.5 0.05 7511.855 18.7796375
4 0.5 0.04 10964.81 17.5436944
4 0.5 0.03 19780.72 17.8026444
4 0.5 0.02 45421.19 18.1684772
4 0.5 0.01 187069.9 18.7069856

Figure 16: Source: BUMP-code/card_sim/epsilon_t1l.csv
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5.6 Problem 2, Data 3

n p e avg_steps eh2 * avg_steps
4 0.7 0.1 1137.873 11.37873
4 0.7 0.09 1326.409 10.7439129
4 0.7 0.08 1709.825 10.94288
4 0.7 0.07 2196.239 10.7615711
4 0.7 0.06 3002.884 10.8103824
4 0.7 0.05 4259.679 10.6491975
4 0.7 0.04 6654.925 10.64788
4 0.7 0.03 11745.88 10.5712911
4 0.7 0.02 26720.64 10.6882544
4 0.7 0.01 109306.9 10.9306864

Figure 17: Source: BUMP-code/card_sim/epsilon_t2.csv

5.7 Problem 2, Data 4

n p e avg_steps ef2 * avg_steps
4 0.3 0.1 3889.985 38.89985
4 0.3 0.09 4441.739 35.9780859
4 0.3 0.08 5929.979 37.9518656
4 0.3 0.07 7900.867 38.7142483
4 0.3 0.06 10297.67 37.0716048
4 0.3 0.05 14292.92 35.7323
4 0.3 0.04 21965.08 35.144128
4 0.3 0.03 40702.62 36.6323607
4 0.3 0.02 92032.52 36.813006
4 0.3 0.01 327828.3 32.7828333

Figure 18: Source: BUMP-code/card_sim/epsilon_t3.csv
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