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1 Introduction

The Fibonacci sequence, discovered by Leonardo da Pisa (or Fibonacci), is a recursively
defined sequence in which the first two terms are both 1 and each successive term is the
sum of the two previous terms. One of the most well-known sequences in mathematics, the
Fibonacci sequence contains many patterns that can be found through careful observation
and deep thinking. This sequence also has many applications, both within and outside of
mathematics (particularly, in nature). For these reasons, there are countless possibilities for
exploration in relation to this sequence. In our project, we examined several topics related
to the Fibonacci numbers, namely arithmetic, modular cycles, and the relationships between
this sequence and other special numbers.

2 Exploration Categories

2.1 Fibonacci Arithmetic

Proposition 1: Consecutive Fibonacci Numbers are Coprime.
Proof:
Base Case: F1 =1, F, =1

(Fb FZ) =1

Assume: (F,, Fy1) =1
Prove: (Fyi1,Fhyo) =1
Since: Frio=F,1 + F,

(Fn—l—laFn-l—Q) = (Fn—i—laFn—i—l + Fn)

(Foi1, Fop1 + Fo) = (Fugr, Fy) = 1 (By Induction Assumption)
Thus : (Fhi1, Fra1 + F) =1
(Fry1, Fry2) =1
Therefore, forn >0, (F,, F,i1) =1 m

Proposition 2: F,,,, = F, 1F, + Fp,F,01, m>1, n>1 m,n €N.
Proof: Keeping m fixed, we apply induction on n.

Letn=1

=B P+ BBy
=F,1-1+F,-1
= m—l_'_Fm

= The statement holds for n =1



Let the statement hold for for n=1,2,...,k

Fm+(k—1) - Fm—le—l + Fka
Fogr = Fp1Fiy + FyFia

© Fogko1 + Fogr = Foo1(Fym1 + F) + Fo(Fi + Fia)
Foyer1) = Fno1Fe + FnFern

.. When the statement holds for k£ € N, it also holds for (k+ 1) € N. Also, the statement holds for 1.
.. The statement holds Vn € N.

c Fpin=FniFy+FpFyy,m>1,n>1, mn €N O

Proposition 3: F,,|F,,, m>1,n>1 mn €N.
Proof: Keeping m fized, we apply induction on n.
Let n=1
. Fo|Fyn , which is true
= The statement holds for n =1
Let the statement hold for for n = 1,2,... k

Fm|ka
Fog+1) = Fokem = For—1Fn + FrFng
Fo|Fn and F, | Fop
= Fo|(Fpk + FogFngr)
or, ol Foe+1)

= The statement holds Vm,n € N, m > 1, n > 1.
S Fn|Fpn, m>1,n>1 mmn € N O

Proposition 4: f m=ng+r ,mneN, ¢,r e Nst. 0<r <n= (F,, F,) = (F,, F,)



Proof:

F,, = Foq4r (By Hypothesis)
Fogir = Frg 1 Fr + FrgFra

L (Fn F) = (an+raFn) = (an—lFr"_F o1, Fo )
Now, F,|F,,

By FogFoy
We know, (a +b,c) = (a,c), if ¢|b

L (Faga By + FogFoa, F) = (Fug Fry F)
Now, let (Fpg—1, F,) =0
O|F, , Fo|Fhg = 0|Fn,

Also, 0| Fg-1
But (Fg, Frg—1) = 1 (By Proposition @)
=0=1
" (Fug-1, Fo) =1
If (a,b) = 1, then (ac,b) = (c,b)

(a,
( ng—1, ) (FTaFn>
=>(Fm,F) (F,.,F,), where m =nqg+r,m,n,q,r €N st.0<r<n [

Proposition 5: (F,, F,) = Fuun), m>1, n> 1.

Proof:

Let m=nqg. +7r1, q1,7m1 €N, 0<r;<n
n=r1q+7re, 2,2 €N, 0<ry<m
r=roq3+13, q3,73 €N, 0<1r3 <y

T2 =Tn-1qn + Tn, qn,Tr € N, 0 <rp <Tpot
Tn—1 = TnQn+1 + 07 n+1 € Na — @

= (Fvan) = (Fran) = (meFm) == (F""n717F7'n>
However, ,|r,_1 (By (1))

= F, |F. _,
s B y) = F,
= (Fn, F,) = F,,



Proposition 6: F2+ Fn+12 = Foi1
Proof:

Base Case: n =1
F12—|—F22 — 12_|_12
=1+1
=2

= The statement holds for n =1

Assume: F,*> + Fpi1® = Fopyq
Prove: Foi* + F(n+1)+12 = Fy(ny1)41

F.2 + Fop1® = Fyny1 (By Assumption)
Foii® = Fop1 — B,
= (Fonyz — Fongo) — Fn2
= Fonys — Fongo — (Frpo — Frpr)?
= Fonyz = Fongo — (Frpo® = 2F,0F0 1 + Fogt?)
= Foni3 — Fonto — Fpo” + 2F0F 01 — Fopd
= Fonsa — Frpo® — Fongo + (Frya + F) Fu1 — Fopt?
= Fopys — Foio® — Fonio + FrpsFpa
+ FFpyy — Fod?
= Foni3 — Fuio® — Fono + (Foso + Fog1) P+
F.Fpi — Fpii?
= Fopys — Foio® — Fonso + FrpoFoi1 + Fopd
+ B P — Fd?
= Fonts — Fryo® = Fongo + Fro P + Fo P
= Fonts — Frio® = Fln)yr(ner) + FrsoFopr + FuFp
We know, Fini1)+m+1) = FnFn1 + Fop1Frqe (By Proposition @)
Bt = Fonys — Fryo® — (FuFn + FuiFoio) + Fryo B + FuF gy
= Fonis — Fuio® — FuFop1 — FuoFui1 + FppoFgn + FuFoga

2
= F2n+3 - Fn+2

= Fn+12 + Fn+22 = Fonyi3
= Fn+12 + F(n+l)+12 = gy U
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Proposition 7: Fn+22 —F? = Fonio
Proof:

We know, Fopio = Fini1)+m+1) = FnFny1 + Fug1Frqe (By Proposition @)
:Fn(Fn+2_Fn)+(Fn+2_Fn>Fn+2
:FnFn+2_Fn2+Fn+22_FnFn+2
= n+22 - Fn2 []

Proposition 8: >~ | Ih_ 1 = Fy,
Proof :

Forq:1,2,3,5,13,34, ...
o0 1,3,8,21,55. ..

Let n =1:
F2.1 = Fg =1

1
Y Fu=Fu-1=FR=1

i=1
ZF22;1 = an forn=1
i=1
Using induction let the formula hold for n =1 ton =k, k € N.

k
R Z Foiq
i=1

For, = Fopq + Fop3 + -+ F3 + F}
o B+ Fop = Fopp + Fopq + Fopg +-- -+ I3+ I

or,
k+1
Foa = g Fai4
i=1
or,

k1
Fagq1) = Z Fai 1
=1

.. The formula holds for n = k + 1 using our induction hypothesis so the formula holds
VneN O

Proposition 9: All natural numbers can be expressed as sum of distinct Fibonacci numbers.



Proof :

The sequence of Fibonacci numbers continues infinitely. So we can show that all the natural
numbers from 1 to some F, 5 (n > 2) and also 1 to F,,_; can be expressed as the sum of
distinct Fibonacci numbers then we can show that all the natural numbers up to Fj, can also
be expressed as the sum of distinct Fibonacci numbers.

1:F1:1
2:F3:2
3=F,=3
4=F+1=3+1
S5=Fs=5

For n = 1, F} can be expressed as the sum of distinct Fibonacci numbers namely 1. Let
dn = k, s.t. all natural numbers from 1 to Fj_; can be expressed as the sum of distinct
Fibonacci numbers. Now, Fj, = Fj,_1 + Fi_o

.. All the natural numbers from 1 to Fj_o can also be expressed as the sum of distinct
Fibonacci numbers.

.. All numbers from Fj,_; to F) can be expressed as Fj,_1 + 1, Fy_1+2,..., F_1+ Fr_o.
Any m, s.t. 1 < m > Fj;_, can be expressed as the sum of distinct Fibonacci numbers.

.. Any Fi_1 +m can also be expressed in such a way.

.. Such an expression is valid when n = 1 and it is valid for n = k, when it holds for n = &
— All natural numbers can be expressed as the sum of distinct Fibonacci Numbers. [

2.2 Cycles of Fibonacci modulo natural numbers

Definition 1: R,: The number of elements in one cycle of the sequence of remainder of the
Fibonacct sequence modulo n

Proposition 1: The sequence of remainder of Fibonacci sequence modulo a natural num-
bers repeats for all natural numbers(except 1). The repetition always starts with 1,1.

Proof: Consider the sequence of Fibonacci numbers modulo n, every element of this se-
quence is in Z,

Let {R;} be the sequence of remainders of the Fibonacci sequence modulo n, where R; is the
ith element of {R;}
{R;} ={0,1,2,3,--- ,(n—1)}

There are n elements in {R;} in total
Clearly, the first two elements of {R;} are 1 and 1 respectively.

Let
S; = {R2z‘—1, R2i}

Since there are only n possible different R;, there are only n? different S;.
hence,by Pigeonhole Principle, S,2,; must be the same as one of S to 5,2

7



Let
S; = {Sia Si+1}

since there are only n? different S;, there are only n* different S
so,by Pigeonhole Principle, S, must be the same as one of S} to S,
Let

Shay =55,5€N

n

So:
{Sn4+17 Sn4+2} = {Sjv Sj—i-l}

Since a fixed S, (k € N)decides the rest of the sequence( two consecutive elements determine
the rest of the sequence by the definition of the Fibonacci sequence) , once Sy starts to
repeat, R; repeats.

= {R;} does repeat

Since there are only a finite number of permutation, the permutation {1, 1} must exist again
= {R;} repeats from the beginning two numbers: 1,1

Proposition 2: Va,b € N, R, = [Rq, R

Proof: Suppose

(a,b) =d,d € N

Then
a=d-d,b=d-V,d, 0 eN, (d,0)=1

Since

la,b] - (a,b) =a-b
So

[a,b]-d=a-b
Hence
[a,b] = ab/d

Since R,, R, are, respectively, the length of the cycle of F,, modulo a and F,, modulo b
so Vk € N

Fr.r, =0 (mod a) + @
Fi.r, =0 (mod b) + @

According to definition, we have:

Frr, , =0 (modab/d)

ab/d

8



w_
d — d
Firyyy =0 (mod a - V)

a - b/|Fk-R

=a-V

ab/d

a|Fk‘Rab/d

By definition:

Frr.,,. =0 (moda)

ab/d

Similarly,

By@

Frr., . =0 (modb)

ab/d
Rab/d =k -R, k1 €N
Rab/d = k’g - Ry k’g eN

Rap/q is a common multiple of R,, R,

By definition of LCM
[Raa Rb] ‘Rab/d

[Ra, R] €N, Ryyq €N

So
[Ra, Ry < Rapa

Also, Since [R,, Rp] is a multiple of R,, Ry , by @
Fir,ry) =0 (mod a)
Fir,,r,) =0 (mod b)

b
Flr,,r) =0 (mod %) + (Lemma 1)
By definition:
Rapya| [Ra, Ry
Rab/d e N , [Ra,Rb] eN
Rab/d S [Rau Rb]

hence
Rapja < [Ra, Ry) s Rapra > [Ra, Ry
Rapja = [Ra, Ry)
[Rm Rb] = R[aﬁb}
QED
Proposition
R = (A Ay

2 2

NG
where Fy =0 and F; =1



Proof. Recall the recursion used for the Fibonacci numbers:
Fo=F, 1+ F,»

We can take advantage of a property of recursions and their closed forms, namely, generating
functions
The function for the Fibonacci recursion is therefore

Fn:anl—i_anQ

?=r+1

_1+45
2
Therefore the closed form for the Fibonacci recursion is of the form

145 1-5

X

F,=A "+ B "
Since Fy =0
0=A+B
A=-B
Since F} =1
1 5 1—+/5
1= a0y plo Y
2 2
14++/5 1-+5
1= B+ B
1
B—_——
V5
A= L

+v5., 1-V6,,
5 ) = (=)

]
Definition L, refers to the Lucas number sequence, a sequence recursively defined as
Ly,=1L, 1+ Ly

with LO =2 and L1 =1
Proposition

1+v5, 1-+5,
5 )+ ()

L, =(
where Lo =2 and L1 =1

10



Proof. Consider the recursion used for the Lucas Numbers
Ln - Ln—l + Ln—2

This gives us the accompanying function

?=x+1
1+v5
xTr =
2
Therefore the closed form for the Lucas recursion is of the form
14+ /5 1—+/5
Lo— Ay p LBy
2 2
Recall Ly = 2
2=A+B
Recall L1 =1
14+ 5 1—-+/5
1= Aty L gl = VB
2 2
A=1
B=1
1+v6., 1-5,
Ly =( )"+ ( )
2 2
Proposition

F? — By Fpp = (=) 2
where F1 =1 and F5 =1 and F,, = F,,_1 + Fn — 2 with £k € IN such that kK <n

Proof. Recall the closed form for the Fibonacci numbers:

1, 1++v5, ,1-+5,
ﬁ(( 5 ) ()"

where iy =1and Fo =1and F,=F,_1 +Fn—2

F, =

Consider:
F? — FoikFoy,

in closed form

e e I N (s

1 1+v5,., 1-5
ﬁ(( 5 )

1+\/5)n+k_(1—\/5

F2— FyyFoy = ( 7))

Sl

( )"™)

11



Suppose

']:‘}:11187

Now, consider:

in closed form

(G P =) = (@ = )t ) =
(2" —y")? — (@™ =y ) @ — ) = (D) - yF)?
Now, consider the left side:
(2" —y")? — (@™ — ") (@ =y
(xn . yn)Z . (xn+k _ ynJrk)(‘rnfk: _ ynfk> — x2n 4 y2n _ 2(xy)n _ (xn+k o ynJrk)(‘rnfk: . ynfk>
(xn_yn)2 . (xn+k _yn+k) (In—k_yn—k> — x2n+y2n_2(l_y>n_ <x2n_xn+kyn—k _In—kyn—l-k_i_an)
($n _yn)Z o ({L‘n+k o yn—l—k) (xn—k o yn—k — x?n +y2n o Q(Zby)n . x?n _I_mn—i—kyn—k _’_:En—kyn—&-k o y2n
(:L,n . yn)2 o (mn—i—k . yn+k)(l,n—k - yn—k) — —Q(ny)n + xn-i—kyn—k + xn—kyn—l—k
(z" —y")? = (@™ =y ) (@ =y ) = =2(zy)" + (ay) (@ + )
Recall

Thus,



1+v5. 1—+5

= () = -
Therefore,
e e (A T [CCA y""‘“) = —2(— ) + (=)@ )
(a7 — ) — (@ ) ) = (1) ()L 4 )
(2" —y")? = (2" — ") (@ y""“) = =2(=1)"(=1)* + (=1)" " (=1)* (=" + y**)
(" — " = (@ R (@ Ry = (P () )
(l‘n o yn>2 . (xnﬂc yn+k)<xn k ynfk) — _2(_1)2k+n + (_1)n+kx2k + (_1)n+ky2k
(a" —y")? = (&"F — ") (2 h ) (=D (@ 4y = 2(=1)F)
(2" —y")? = (@"TF =y ) (@ =y ) = ()M 4 P - 2(ay)Y)

(2" —y")? — (2" — y”*’“)(w Ryt = (=DM = )
Thus,
F? — By pFy = (=) 2

Proposition ¢* = F;,_1p + Fj,_, where Fy =1, F} =1, k > 2

Proof. We can prove this statement using induction

Base Case:
k=2
o’ =Fo+F
p*=p+1
This is true, as it is a property of ¢
Inductive Step:
Assume @ = Fy,_1p + Fj,_, is true
Prove o1 = FLo+ F)_;
Consider
Pas
O = Sk

P = (Fem1p + Froa) %
P = B 10+ Frap
Since ¢ = ¢ + 1,

¢k+1 _ Fk71§02 + Frop=Fp 1+ (Fro1+ Fro)p

O = B 10* + Fuop = Fy 1 + Frp
Ot = Fep+ Py

13



Proposition
Vee N, n>1,31or2 F, in the interval [z,2z] with Fy =1 and F} =1

Proof. Notice that any natural number x is between two consecutive Fibonacci numbers F,
and F), 4
Fn S x S Fn+1

Oéx_FnSFn—H_Fn

Note that since n > 1, F,,, Fj,;1 # 1. Thus, F,, # F,1, and F,, < x < F, ;1 is actually
F,<x<F,orF,<zx<F,,

Part 1: Prove Existence

First, assume that there exists no Fibonacci number in the interval [x,2z]|. Thus, since
2z must now be in the interval (z, F},;1),

2 —r < Fhy1—x

20 —x < F,+F,_1—=x
r—F,<F,1—=x

Recall that x — F,, > 0. In other words, the left hand side is a non-negative integer However,
since
x Z Fn Z Fn—l

xZFn—l
Fn_l—xSO

Thus, since the right hand side is a non-negative integer, and the left hand side is a non-
positive integer,
c—F,=F,_1—2=0

Thus,
x=1F,=1F,

This is a contradiction to our assumption that there does not exist Fibonacci numbers in the
interval [z, 2z]. Thus, there must always exist at least one Fibonacci number in that interval
Part 2: Prove a maximum of two Fibonacci numbers in that interval
Consider the inequality
Fn S i S Fn+1

Since we proved existence of at least one Fibonacci number in the interval,
F,<w< P, <2

Consider
F, <z
Fo+Fopg <x+ Fy

Fopo <o+ Fn

14



Consider x = F, 11
Fn+2 <z+zx

Fn+2 S 2

(Note that since = F, .1, the equation F,,;1 < F,i90 < 22 = x < F,;5 < 2z) Since
x = F, 1 is completely legitimate by our definitions, we have proven that F;, 5 is also in our
interval, and thus, it is possible to have two Fibonacci numbers in the interval [z, 2x]
Now, assume there exists an x such that there are three Fibonacci numbers in the interval
[z, 2z]. Thus,
F,<z<F,1 <F,2<F,3<2r

Consider F, 3 < 2z
Fn+1+Fn+2 S 2x

2Fn+1 + Fn S 2x

Since F,, < x, and we are in natural numbers,
2Fn+1+Fn S 2Fn

2Fn+1§Fn

This is a contradiction, as
Fn+1 Z Fn

Thus, our assumption was incorrect that there exists three Fibonacci numbers in the interval
[z, 2x]. Therefore, there exists one or two Fibonacci numbers within the interval [z, 2x] with
2 in the natural numbers and n > 1 O

2.3 Lemma

Vk € Z,a € NJb e N,

If
k=0 (moda),k=0 (modb)
then
k=0 (mod |a,b])
Proof:
Suppose

k=0 (moda),k=0 (modb)

By definition of moduolo
alk,blk

Let
k=a-ki,k=b-ko,ky € Z,ky €7

Suppose
(a,b) =d,d € N

15



Then
a=d-d,b=d-V,d e NV eN,(d,0)=1

Since
[a,0] - (a,b) =a-b=(a'-d)-(V-d)
So
[a,b] -d = a'b'd?
Hence
la,b] = d'b'd
= k=ddky, k="Vdk,
Hence
a'k‘l = b/k’Q

According to the Fundamental Theorem of Arithmetic
Since

a'/ﬁ]b'kg, (a', b/) =1
Then

CL,|]€2

Let

ky=Fk-d K e€Z
Then

k=b-ky=(Vd)- (dk)=ddk
Hence
a't'd|k
= [a, ]|k

2.4 Other Conjectures

1. If p is a rational prime, m € N then Rym = R, * p™ !

2. If p is a rational prime, and p = 3 or 7 (mod 10), then R, = @ for some n € N
3. If p is a rational prime, and p =1 or 9 (mod 10), then R, = (pn;l) for some n € N
4. Vn e Z?, t e Nand t > 3 then: 2'|Fyoi—2(2,41) and 271t Fyoi-2(9,,11)

5. Vn € NIf n42 and n > 3 then 3p, k € N where p is prime and p*|F), s.t. 4n = R,

6. Vn € N If n|2 and n > 2 then Jp, k € N where p is prime and p*|F), s.t. 2n = Rk

16



10.

11.

12.

If 1 =0and Fy, =1, (ay, by, c,) is a Pythagorean triple following:
(CLn, bn7 Cn) - (an—l + bn—l + Cn—1, F2n—1 - bn—la FQn)

(a/37b3703> = (47375)
n>4

If Fy =0and Fy =1, (ay, by, c,) is a pythagorean triple following:
(ana bna Cn) = (2FnFn—17 FQn—la F’r% - Fr%—l)

n>3

. Vn, 3X,Y st | X| = F, and |Y| = Fouq

XF,+YF,y =1

IfF():OandFlzlwithL0:2andL1:1
Vn and an arbitrary k (k < n)

If k is odd,
SFpFn = Ln i+ Ln-i—k

FkLn:Fn—k+Fn+k

If k is even,
LnLk = Ln—k + Ln+k

Lan :ank+Fn+k
Vn € N, 3 F, and L,, st if F, had r digits, and n has n’ digits,
F.=nx 100" + k

ke N
k<10

Likewise, if L,, has m digits,
L, =nx10"" +k
kK eN
k< 10m™

l. Fn+1
1m

n—oo F),

=¥

17



Number of Digits

55

50

45

35

30

Number of Digits in Each Base Representation

5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59 61 63 65 67 69 71 73 75 77

o D2 < D3 D4 < D5 < D6 < D7 < D8 < D9 D10

Figure 1: A graph of the increasing number of digits in different bases.
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2.5 Base Representation Trend

The rates at which the number of digits of various base representations of Fibonacci numbers
increase can be visualized through the following figure. After graphing the lines of best fit
for the trend within each base, one can observe that the slopes of these lines seem to follow
a negative exponential trend from base 2 to base 10.

Approzimate equations of lines of best fit:

Base 2: y = 0.6915z — 0.5331
Base 3: y = 0.4363x — 0.1568
Base 4: y = 0.3466x — 0.0513
Base 5: y = 0.2978x + 0.0573
Base 6: y = 0.2679x 4 0.0833
Base 7: y = 0.2441z 4 0.2151
Base 8: y = 0.2296x 4 0.2111
Base 9: y = 0.2177x 4+ 0.1955
Base 10: y = 0.2078x + 0.2005
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