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1 Introduction
The Fibonacci sequence, discovered by Leonardo da Pisa (or Fibonacci), is a recursively
defined sequence in which the first two terms are both 1 and each successive term is the
sum of the two previous terms. One of the most well-known sequences in mathematics, the
Fibonacci sequence contains many patterns that can be found through careful observation
and deep thinking. This sequence also has many applications, both within and outside of
mathematics (particularly, in nature). For these reasons, there are countless possibilities for
exploration in relation to this sequence. In our project, we examined several topics related
to the Fibonacci numbers, namely arithmetic, modular cycles, and the relationships between
this sequence and other special numbers.

2 Exploration Categories

2.1 Fibonacci Arithmetic

Proposition 1: Consecutive Fibonacci Numbers are Coprime.

Proof:

Base Case: F1 = 1, F2 = 1
(F1, F2) = 1

Assume: (Fn, Fn+1) = 1
Prove: (Fn+1, Fn+2) = 1
Since: Fn+2 = Fn+1 + Fn

(Fn+1, Fn+2) = (Fn+1, Fn+1 + Fn)

(Fn+1, Fn+1 + Fn) = (Fn+1, Fn) = 1 (By Induction Assumption)

Thus : (Fn+1, Fn+1 + Fn) = 1

(Fn+1, Fn+2) = 1

Therefore, for n > 0 , (Fn, Fn+1) = 1

Proposition 2: Fm+n = Fm−1Fn + FmFn+1 , m > 1, n ≥ 1, m, n ∈ N.

Proof: Keeping m fixed, we apply induction on n.

Let n = 1

∴ Fm+1 = Fm−1F1 + FmF2

= Fm−1 · 1 + Fm · 1
= Fm−1 + Fm

⇒ The statement holds for n = 1
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Let the statement hold for for n= 1, 2, . . . , k

∴ Fm+(k−1) = Fm−1Fk−1 + FmFk

Fm+k = Fm−1Fk + FmFk+1

∴ Fm+k−1 + Fm+k = Fm−1(Fk−1 + Fk) + Fm(Fk + Fk+1)

Fm+(k+1) = Fm−1Fk+1 + FmF(k+1)+1

∴ When the statement holds for k ∈ N, it also holds for (k + 1) ∈ N. Also, the statement holds for 1.
∴ The statement holds ∀n ∈ N.

∴ Fm+n = Fm−1Fn + FmFn+1 , m > 1, n ≥ 1, m, n ∈ N

Proposition 3: Fm|Fmn, m ≥ 1, n ≥ 1, m, n ∈ N.

Proof: Keeping m fixed, we apply induction on n.

Let n= 1

∴ Fm|Fm , which is true

⇒ The statement holds for n = 1

Let the statement hold for for n = 1,2,. . . ,k

∴ Fm|Fmk

Fm(k+1) = Fmk+m = Fmk−1Fm + FmkFm+1

Fm|Fm and Fm|Fmk

⇒ Fm|(Fmk + FmkFm+1)

or, Fm|Fm(k+1)

⇒ The statement holds ∀m,n ∈ N, m ≥ 1, n ≥ 1.
∴ Fm|Fmn, m ≥ 1, n ≥ 1, m, n ∈ N

Proposition 4: If m = nq + r , m,n ∈ N, q, r ∈ N s.t. 0 ≤ r < n⇒ (Fm, Fn) = (Fr, Fn)
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Proof:

Fm = Fnq+r (By Hypothesis)
Fnq+r = Fnq−1Fr + FnqFr+1

∴ (Fm, Fn) = (Fnq+r, Fn) = (Fnq−1Fr + FnqFr+1, Fn)

Now, Fn|Fnq

∴ Fn|FnqFr+1

We know, (a+ b, c) = (a, c), if c|b
∴ (Fnq−1Fr + FnqFr+1, Fn) = (Fnq−1Fr, Fn)

Now, let (Fnq−1, Fn) = δ

δ|Fn , Fn|Fnq ⇒ δ|Fnq

Also, δ|Fnq−1

But (Fnq, Fnq−1) = 1 (By Proposition 1 )
⇒ δ = 1

∴ (Fnq−1, Fn) = 1

If (a, b) = 1, then (ac, b) = (c, b)

∴ (Fnq−1, Fn) = (Fr, Fn)

⇒ (Fm, Fn) = (Fr, Fn), where m = nq + r , m,n, q, r ∈ N s.t.0 ≤ r < n

Proposition 5: (Fm, Fn) = F(m,n), m ≥ 1, n ≥ 1.

Proof:

Let m = nq1 + r1, q1, r1 ∈ N, 0 ≤ r1 < n

n = r1q2 + r2, q2, r2 ∈ N, 0 ≤ r2 < r1

r1 = r2q3 + r3, q3, r3 ∈ N, 0 ≤ r3 < r2

.

.

.

rn−2 = rn−1qn + rn, qn, rr ∈ N, 0 ≤ rn < rn−1

rn−1 = rnqn+1 + 0, qn+1 ∈ N, ← i
⇒ (Fm, Fn) = (Fr1 , Fn) = (Fr2 , Fr1) = · · · = (Frn−1 , Frn)

However, rn|rn−1 (By i )
⇒ Frn|Frn−1

∴ (Frn , Frn−1) = Frn

⇒ (Fm, Fn) = Frn

But (m,n) = rn

∴ (Fm, Fn) = F(m,n)
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Proposition 6: Fn
2 + Fn+1

2 = F2n+1

Proof:

Base Case: n = 1

F1
2 + F2

2 = 12 + 12

= 1 + 1

= 2

⇒ The statement holds for n = 1

Assume: Fn
2 + Fn+1

2 = F2n+1

Prove: Fn+1
2 + F(n+1)+1

2 = F2(n+1)+1

Fn
2 + Fn+1

2 = F2n+1 (By Assumption)
Fn+1

2 = F2n+1 − Fn
2

= (F2n+3 − F2n+2)− Fn
2

= F2n+3 − F2n+2 − (Fn+2 − Fn+1)
2

= F2n+3 − F2n+2 − (Fn+2
2 − 2Fn+2Fn+1 + Fn+1

2)

= F2n+3 − F2n+2 − Fn+2
2 + 2Fn+2Fn+1 − Fn+1

2

= F2n+3 − Fn+2
2 − F2n+2 + (Fn+3 + Fn)Fn+1 − Fn+1

2

= F2n+3 − Fn+2
2 − F2n+2 + Fn+3Fn+1

+ FnFn+1 − Fn+1
2

= F2n+3 − Fn+2
2 − F2n+2 + (Fn+2 + Fn+1)Fn+1+

FnFn+1 − Fn+1
2

= F2n+3 − Fn+2
2 − F2n+2 + Fn+2Fn+1 + Fn+1

2

+ FnFn+1 − Fn+1
2

= F2n+3 − Fn+2
2 − F2n+2 + Fn+2Fn+1 + FnFn+1

= F2n+3 − Fn+2
2 − F(n+1)+(n+1) + Fn+2Fn+1 + FnFn+1

We know, F(n+1)+(n+1) = FnFn+1 + Fn+1Fn+2 (By Proposition 2 )
∴ Fn+1

2 = F2n+3 − Fn+2
2 − (FnFn+1 + Fn+1Fn+2) + Fn+2Fn+1 + FnFn+1

= F2n+3 − Fn+2
2 − FnFn+1 − Fn+2Fn+1 + Fn+2Fn+1 + FnFn+1

= F2n+3 − Fn+2
2

⇒ Fn+1
2 + Fn+2

2 = F2n+3

⇒ Fn+1
2 + F(n+1)+1

2 = F2(n+1)+1
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Proposition 7: Fn+2
2 − Fn

2 = F2n+2

Proof:

We know, F2n+2 = F(n+1)+(n+1) = FnFn+1 + Fn+1Fn+2 (By Proposition 2 )
= Fn(Fn+2 − Fn) + (Fn+2 − Fn)Fn+2

= FnFn+2 − Fn
2 + Fn+2

2 − FnFn+2

= Fn+2
2 − Fn

2

Proposition 8:
∑n

i=1 F2i−1 = F2n

Proof :

F2k−1 : 1, 2, 3, 5, 13, 34, . . .

F2k : 1, 3, 8, 21, 55 . . .

Let n = 1:
∴ F2·1 = F2 = 1

1∑
i=1

F2i−1 = F2·1 − 1 = F1 = 1

∴
n∑

i=1

F2i−1 = F2n for n = 1

Using induction let the formula hold for n = 1 to n = k, k ∈ N.

∴ F2k =
k∑

i=1

F2i−1

F2k = F2k−1 + F2k−3 + · · ·+ F3 + F1

∴ F2k+1 + F2k = F2k+1 + F2k−1 + F2k−3 + · · ·+ F3 + F1

or,

F2k+2 =
k+1∑
i=1

F2i−1

or,

F2(k+1) =
k+1∑
i=1

F2i−1

∴ The formula holds for n = k + 1 using our induction hypothesis so the formula holds
∀n ∈ N
Proposition 9: All natural numbers can be expressed as sum of distinct Fibonacci numbers.
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Proof :
The sequence of Fibonacci numbers continues infinitely. So we can show that all the natural
numbers from 1 to some Fn−2 (n > 2) and also 1 to Fn−1 can be expressed as the sum of
distinct Fibonacci numbers then we can show that all the natural numbers up to Fn can also
be expressed as the sum of distinct Fibonacci numbers.

1 = F1 = 1

2 = F3 = 2

3 = F4 = 3

4 = F4 + 1 = 3 + 1

5 = F5 = 5

For n = 1, F1 can be expressed as the sum of distinct Fibonacci numbers namely 1. Let
∃n = k, s.t. all natural numbers from 1 to Fk−1 can be expressed as the sum of distinct
Fibonacci numbers. Now, Fk = Fk−1 + Fk−2
∴ All the natural numbers from 1 to Fk−2 can also be expressed as the sum of distinct
Fibonacci numbers.
∴ All numbers from Fk−1 to Fk can be expressed as Fk−1 + 1, Fk−1 + 2, . . . , Fk−1 + Fk−2.
Any m, s.t. 1 ≤ m ≥ Fk−2 can be expressed as the sum of distinct Fibonacci numbers.
∴ Any Fk−1 +m can also be expressed in such a way.
∴ Such an expression is valid when n = 1 and it is valid for n = k, when it holds for n = k
→ All natural numbers can be expressed as the sum of distinct Fibonacci Numbers.

2.2 Cycles of Fibonacci modulo natural numbers

Definition 1: Rn: The number of elements in one cycle of the sequence of remainder of the
Fibonacci sequence modulo n
Proposition 1: The sequence of remainder of Fibonacci sequence modulo a natural num-
bers repeats for all natural numbers(except 1). The repetition always starts with 1,1.

Proof: Consider the sequence of Fibonacci numbers modulo n, every element of this se-
quence is in Zn

Let {Ri} be the sequence of remainders of the Fibonacci sequence modulo n, where Ri is the
ith element of {Ri}

{Ri} = {0, 1, 2, 3, · · · , (n− 1)}

There are n elements in {Ri} in total
Clearly, the first two elements of {Ri} are 1 and 1 respectively.

Let
Si := {R2i−1, R2i}

Since there are only n possible different Ri, there are only n2 different Si.
hence,by Pigeonhole Principle, Sn2+1 must be the same as one of S1 to Sn2
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Let
S ′i := {Si, Si+1}

since there are only n2 different Si, there are only n4 different S ′i
so,by Pigeonhole Principle, S ′n4+1 must be the same as one of S ′1 to S ′n4

Let
S ′n4+1 = S ′j, j ∈ N

So:
{Sn4+1, Sn4+2} = {Sj, Sj+1}

Since a fixed Sk (k ∈ N)decides the rest of the sequence( two consecutive elements determine
the rest of the sequence by the definition of the Fibonacci sequence) , once Sk starts to
repeat, Ri repeats.
⇒ {Ri} does repeat
Since there are only a finite number of permutation, the permutation {1, 1} must exist again
⇒ {Ri} repeats from the beginning two numbers: 1,1

Proposition 2: ∀a, b ∈ N, R[a,b] = [Ra, Rb]

Proof: Suppose
(a, b) = d, d ∈ N

Then
a = d · a′, b = d · b′, a′, b′ ∈ N, (a′, b′) = 1

Since
[a, b] · (a, b) = a · b

So
[a, b] · d = a · b

Hence
[a, b] = ab/d

Since Ra, Rb are, respectively, the length of the cycle of Fn modulo a and Fn modulo b
so ∀k ∈ N

Fk·Ra ≡ 0 (mod a)← 1

Fk·Rb
≡ 0 (mod b)← 1

According to definition, we have:

Fk·Rab/d
≡ 0 (mod ab/d)
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ab

d
= a · b

d
= a · b′

Fk·Rab/d
≡ 0 (mod a · b′)

a · b′|Fk·Rab/d

a|Fk·Rab/d

By definition:
Fk·Rab/d

≡ 0 (mod a)

Similarly,
Fk·Rab/d

≡ 0 (mod b)

By 1
Rab/d = k1 ·Ra k1 ∈ N
Rab/d = k2 ·Rb k2 ∈ N

Rab/d is a common multiple of Ra, Rb

By definition of LCM
[Ra, Rb] |Rab/d

[Ra, Rb] ∈ N , Rab/d ∈ N
So

[Ra, Rb] ≤ Rab/d

Also, Since [Ra, Rb] is a multiple of Ra, Rb , by 1

F[Ra,Rb] ≡ 0 (mod a)

F[Ra,Rb] ≡ 0 (mod b)

F[Ra,Rb] ≡ 0 (mod
ab

d
)← (Lemma 1)

By definition:
Rab/d| [Ra, Rb]

Rab/d ∈ N , [Ra, Rb] ∈ N
Rab/d ≤ [Ra, Rb]

hence
Rab/d ≤ [Ra, Rb] , Rab/d ≥ [Ra, Rb]

Rab/d = [Ra, Rb]

[Ra, Rb] = R[a,b]

QED

Proposition

Fn =
1√
5
((
1 +
√
5

2
)n − (

1−
√
5

2
)n)

where F0 = 0 and F1 = 1
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Proof. Recall the recursion used for the Fibonacci numbers:

Fn = Fn−1 + Fn−2

We can take advantage of a property of recursions and their closed forms, namely, generating
functions

The function for the Fibonacci recursion is therefore

Fn = Fn−1 + Fn−2

x2 = x+ 1

x =
1±
√
5

2
Therefore the closed form for the Fibonacci recursion is of the form

Fn = A(
1 +
√
5

2
)n +B(

1−
√
5

2
)n

Since F0 = 0
0 = A+B

A = −B
Since F1 = 1

1 = A(
1 +
√
5

2
) +B(

1−
√
5

2
)

1 = (−B)(
1 +
√
5

2
) +B(

1−
√
5

2
)

B = − 1√
5

A =
1√
5

Fn = (
1√
5
)(
1 +
√
5

2
)n + (− 1√

5
)(
1−
√
5

2
)n

Fn =
1√
5
((
1 +
√
5

2
)n − (

1−
√
5

2
)n)

Definition Ln refers to the Lucas number sequence, a sequence recursively defined as

Ln = Ln−1 + Ln−2

with L0 = 2 and L1 = 1
Proposition

Ln = (
1 +
√
5

2
)n + (

1−
√
5

2
)n

where L0 = 2 and L1 = 1
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Proof. Consider the recursion used for the Lucas Numbers

Ln = Ln−1 + Ln−2

This gives us the accompanying function

x2 = x+ 1

x =
1±
√
5

2

Therefore the closed form for the Lucas recursion is of the form

Ln = A(
1 +
√
5

2
)n +B(

1−
√
5

2
)n

Recall L0 = 2
2 = A+B

Recall L1 = 1

1 = A(
1 +
√
5

2
) +B(

1−
√
5

2
)

A = 1

B = 1

Ln = (
1 +
√
5

2
)n + (

1−
√
5

2
)n

Proposition
F 2
n − Fn+kFn−k = (−1)k+nF 2

k

where F1 = 1 and F2 = 1 and Fn = Fn−1 + Fn− 2 with k ∈ N such that k < n

Proof. Recall the closed form for the Fibonacci numbers:

Fn =
1√
5
((
1 +
√
5

2
)n − (

1−
√
5

2
)n)

where F1 = 1 and F2 = 1 and Fn = Fn−1 + Fn− 2

Consider:
F 2
n − Fn+kFn−k

in closed form

F 2
n − Fn+kFn−k = (

1√
5
((
1 +
√
5

2
)n − (

1−
√
5

2
)n))2 − (

1√
5
((
1 +
√
5

2
)n+k − (

1−
√
5

2
)n+k))

(
1√
5
((
1 +
√
5

2
)n−k − (

1−
√
5

2
)n−k))
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Suppose

x =
1 +
√
5

2

y =
1−
√
5

2

Thus,

F 2
n − Fn+kFn−k = (

1√
5
(xn − yn))2 − (

1√
5
(xn+k − yn+k))(

1√
5
(xn−k − yn−k))

Now, consider:
(−1)k+nF 2

k

in closed form

(−1)k+nF 2
k = (−1)k+n(

1√
5
((
1 +
√
5

2
)k − (

1−
√
5

2
)k))2 = (−1)k+n(

1√
5
(xk − yk))2

Therefore, it is sufficient to prove that

(
1√
5
(xn − yn))2 − (

1√
5
(xn+k − yn+k))(

1√
5
(xn−k − yn−k)) = (−1)k+n(

1√
5
(xk − yk))2

(
1√
5
)2((xn − yn)2 − (xn+k − yn+k)(xn−k − yn−k)) = (

1√
5
)2(−1)k+n(xk − yk)2

(xn − yn)2 − (xn+k − yn+k)(xn−k − yn−k) = (−1)k+n(xk − yk)2

Now, consider the left side:

(xn − yn)2 − (xn+k − yn+k)(xn−k − yn−k)

(xn − yn)2 − (xn+k − yn+k)(xn−k − yn−k) = x2n + y2n − 2(xy)n − (xn+k − yn+k)(xn−k − yn−k)

(xn−yn)2−(xn+k−yn+k)(xn−k−yn−k) = x2n+y2n−2(xy)n−(x2n−xn+kyn−k−xn−kyn+k+y2n)

(xn−yn)2−(xn+k−yn+k)(xn−k−yn−k) = x2n+y2n−2(xy)n−x2n+xn+kyn−k+xn−kyn+k−y2n

(xn − yn)2 − (xn+k − yn+k)(xn−k − yn−k) = −2(xy)n + xn+kyn−k + xn−kyn+k

(xn − yn)2 − (xn+k − yn+k)(xn−k − yn−k) = −2(xy)n + (xy)n−k(x2k + y2k)

Recall

x =
1 +
√
5

2

y =
1−
√
5

2

Thus,
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xy = (
1 +
√
5

2
)(
1−
√
5

2
) = −1

Therefore,

(xn − yn)2 − (xn+k − yn+k)(xn−k − yn−k) = −2(−1)n + (−1)n−k(x2k + y2k)

(xn − yn)2 − (xn+k − yn+k)(xn−k − yn−k) = −2(−1)n1k + (−1)n−k1k(x2k + y2k)

(xn − yn)2 − (xn+k − yn+k)(xn−k − yn−k) = −2(−1)n(−1)2k + (−1)n−k(−1)2k(x2k + y2k)

(xn − yn)2 − (xn+k − yn+k)(xn−k − yn−k) = −2(−1)2k+n + (−1)n+k(x2k + y2k)

(xn − yn)2 − (xn+k − yn+k)(xn−k − yn−k) = −2(−1)2k+n + (−1)n+kx2k + (−1)n+ky2k

(xn − yn)2 − (xn+k − yn+k)(xn−k − yn−k) = (−1)k+n(x2k + y2k − 2(−1)k)
(xn − yn)2 − (xn+k − yn+k)(xn−k − yn−k) = (−1)k+n(x2k + y2k − 2(xy)k)

(xn − yn)2 − (xn+k − yn+k)(xn−k − yn−k) = (−1)k+n(xk − yk)2

Thus,
F 2
n − Fn+kFn−k = (−1)k+nF 2

k

Proposition ϕk = Fk−1ϕ+ Fk−2 where F0 = 1, F1 = 1, k ≥ 2

Proof. We can prove this statement using induction
Base Case:

k = 2

ϕ2 = F1ϕ+ F0

ϕ2 = ϕ+ 1

This is true, as it is a property of ϕ
Inductive Step:
Assume ϕk = Fk−1ϕ+ Fk−2 is true
Prove ϕk+1 = Fkϕ+ Fk−1
Consider

ϕk+1

ϕk+1 = ϕk ∗ ϕ
ϕk+1 = (Fk−1ϕ+ Fk−2) ∗ ϕ
ϕk+1 = Fk−1ϕ

2 + Fk−2ϕ

Since ϕ2 = ϕ+ 1,

ϕk+1 = Fk−1ϕ
2 + Fk−2ϕ = Fk−1 + (Fk−1 + Fk−2)ϕ

ϕk+1 = Fk−1ϕ
2 + Fk−2ϕ = Fk−1 + Fkϕ

ϕk+1 = Fkϕ+ Fk−1

13



Proposition
∀x ∈ N, n ≥ 1, ∃ 1 or 2 Fn in the interval [x, 2x] with F0 = 1 and F1 = 1

Proof. Notice that any natural number x is between two consecutive Fibonacci numbers Fn

and Fn+1

Fn ≤ x ≤ Fn+1

0 ≤ x− Fn ≤ Fn+1 − Fn

Note that since n ≥ 1, Fn, Fn+1 6= 1. Thus, Fn 6= Fn+1, and Fn ≤ x ≤ Fn+1 is actually
Fn < x ≤ Fn+1 or Fn ≤ x < Fn+1

Part 1: Prove Existence
First, assume that there exists no Fibonacci number in the interval [x, 2x]. Thus, since

2x must now be in the interval (x, Fn+1),

2x− x < Fn+1 − x

2x− x < Fn + Fn−1 − x

x− Fn < Fn−1 − x

Recall that x−Fn ≥ 0. In other words, the left hand side is a non-negative integer However,
since

x ≥ Fn ≥ Fn−1

x ≥ Fn−1

Fn−1 − x ≤ 0

Thus, since the right hand side is a non-negative integer, and the left hand side is a non-
positive integer,

x− Fn = Fn−1 − x = 0

Thus,
x = Fn = Fn−1

This is a contradiction to our assumption that there does not exist Fibonacci numbers in the
interval [x, 2x]. Thus, there must always exist at least one Fibonacci number in that interval

Part 2: Prove a maximum of two Fibonacci numbers in that interval
Consider the inequality

Fn ≤ x ≤ Fn+1

Since we proved existence of at least one Fibonacci number in the interval,

Fn ≤ x ≤ Fn+1 ≤ 2x

Consider
Fn ≤ x

Fn + Fn+1 ≤ x+ Fn+1

Fn+2 ≤ x+ Fn+1
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Consider x = Fn+1

Fn+2 ≤ x+ x

Fn+2 ≤ 2x

(Note that since x = Fn+1, the equation Fn+1 ≤ Fn+2 ≤ 2x ⇒ x ≤ Fn+2 ≤ 2x) Since
x = Fn+1 is completely legitimate by our definitions, we have proven that Fn+2 is also in our
interval, and thus, it is possible to have two Fibonacci numbers in the interval [x, 2x]

Now, assume there exists an x such that there are three Fibonacci numbers in the interval
[x, 2x]. Thus,

Fn ≤ x ≤ Fn+1 ≤ Fn+2 ≤ Fn+3 ≤ 2x

Consider Fn+3 ≤ 2x
Fn+1 + Fn+2 ≤ 2x

2Fn+1 + Fn ≤ 2x

Since Fn ≤ x, and we are in natural numbers,

2Fn+1 + Fn ≤ 2Fn

2Fn+1 ≤ Fn

This is a contradiction, as
Fn+1 ≥ Fn

Thus, our assumption was incorrect that there exists three Fibonacci numbers in the interval
[x, 2x]. Therefore, there exists one or two Fibonacci numbers within the interval [x, 2x] with
x in the natural numbers and n ≥ 1

2.3 Lemma

∀k ∈ Z, a ∈ N, b ∈ N,
If

k ≡ 0 (mod a), k ≡ 0 (mod b)

then
k ≡ 0 (mod [a, b])

Proof:
Suppose

k ≡ 0 (mod a), k ≡ 0 (mod b)

By definition of moduolo
a|k, b|k

Let
k = a · k1, k = b · k2, k1 ∈ Z, k2 ∈ Z

Suppose
(a, b) = d, d ∈ N
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Then
a = d · a′, b = d · b′, a′ ∈ N, b′ ∈ N, (a′, b′) = 1

Since
[a, b] · (a, b) = a · b = (a′ · d) · (b′ · d)

So
[a, b] · d = a′b′d2

Hence
[a, b] = a′b′d

⇒ k = a′dk1, k = b′dk2

Hence
a′k1 = b′k2

According to the Fundamental Theorem of Arithmetic
Since

a′k1|b′k2, (a′, b′) = 1

Then
a′|k2

Let
k2 = k′ · a′, k′ ∈ Z

Then
k = b · k2 = (b′d) · (a′k′) = a′b′dk′

Hence
a′b′d|k

⇒ [a, b]|k

2.4 Other Conjectures

1. If p is a rational prime, m ∈ N then Rpm = Rp ∗ pm−1

2. If p is a rational prime, and p ≡ 3 or 7 (mod 10), then Rp =
2(p+1)

n
for some n ∈ N

3. If p is a rational prime, and p ≡ 1 or 9 (mod 10), then Rp =
(p−1)

n
for some n ∈ N

4. ∀n ∈ Z≥0, t ∈ N and t ≥ 3 then: 2t|F3∗2t−2(2n+1) and 2t+1 - F3∗2t−2(2n+1)

5. ∀n ∈ N If n - 2 and n > 3 then ∃p, k ∈ N where p is prime and pk|Fn s.t. 4n = Rpk

6. ∀n ∈ N If n|2 and n > 2 then ∃p, k ∈ N where p is prime and pk|Fn s.t. 2n = Rpk
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7. If F1 = 0 and F2 = 1, (an, bn, cn) is a Pythagorean triple following:

(an, bn, cn) = (an−1 + bn−1 + cn−1, F2n−1 − bn−1, F2n)

(a3, b3, c3) = (4, 3, 5)

n ≥ 4

8. If F0 = 0 and F1 = 1, (an, bn, cn) is a pythagorean triple following:

(an, bn, cn) = (2FnFn−1, F2n−1, F
2
n − F 2

n−1)

n ≥ 3

9. ∀n, ∃X, Y st |X| = Fx and |Y | = Fx±1

XFn + Y Fn+1 = 1

10. If F0 = 0 and F1 = 1 with L0 = 2 and L1 = 1

∀n and an arbitrary k (k ≤ n)

If k is odd,
5FkFn = Ln−k + Ln+k

FkLn = Fn−k + Fn+k

If k is even,
LnLk = Ln−k + Ln+k

LkFn = Fn−k + Fn+k

11. ∀n ∈ N, ∃ Fr and Lm st if Fr had r digits, and n has n′ digits,

Fr = n ∗ 10r−n′ + k

k ∈ N

k < 10r−n
′

Likewise, if Lm has m digits,

Lm = n ∗ 10m−n′ + k′

k′ ∈ N

k < 10m−n
′

12.
lim
n→∞

Fn+1

Fn

= ϕ
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Figure 1: A graph of the increasing number of digits in different bases.
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2.5 Base Representation Trend

The rates at which the number of digits of various base representations of Fibonacci numbers
increase can be visualized through the following figure. After graphing the lines of best fit
for the trend within each base, one can observe that the slopes of these lines seem to follow
a negative exponential trend from base 2 to base 10.
Approximate equations of lines of best fit:

Base 2: y = 0.6915x− 0.5331

Base 3: y = 0.4363x− 0.1568

Base 4: y = 0.3466x− 0.0513

Base 5: y = 0.2978x+ 0.0573

Base 6: y = 0.2679x+ 0.0833

Base 7: y = 0.2441x+ 0.2151

Base 8: y = 0.2296x+ 0.2111

Base 9: y = 0.2177x+ 0.1955

Base 10: y = 0.2078x+ 0.2005
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