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Introduction
One important use of differential equations in life sciences is to model popula-

tion densities [10, 11]. In this paper, we analyze Okubo’s [14] application of diffusion-
competition model that describes the interaction between two squirrel populations
in Britain.

The rest of the paper is organized as follows: first, we introduce the problem by
providing context for the squirrel population density problem, as well as the history
of related works on diffusion-competition models. Then, we formulate the problem in
concise mathematical notations following the work of Okubo et al. Next, we provide
the analysis and results of the differential equation problem formulated, aiming to
analyze the steady states and stability, as well as the analytical solution to the
partial differential equation (PDE) problem. We also provide some interpretation of
the results, and expand on the applications of Turing System in other fields. Finally,
we conclude with a short summary of the main points.

a. Squirrel Population Problem
Okubo et al’s [14] work aims to answer the question of how the population two

the two squirrel species interacts and changes. Around 1900, some North American
grey squirrels were released in some parts of Britain, and has successfully taken
habitat there and spread through most of England, Wales, and Scottland. This
posed a new threat to the population of the indigenous red squirrels, which is said
to have declined in population and nearly disappeared. The goal of Okubo et al
was to present a simple mathematical framework of competition and diffusion of the
two species and obtain solutions to the differential-equation model to explain the
population changes observed in the red and grey squirrel cohorts.

In their work, Okubo et al makes two important assumptions. First, the inter-
action between the two species includes indirect competition for food, habitat, and
resources as well as direct competition through physical contact. Second, they as-
sumed the population number is big enough that a continuous differential equations
model makes sense for discrete animal population.
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A big part of their work was also dedicated to estimate the parameters of the
PDE problem using available data. This paper, however, focuses entirely on the
PDE problem itself and therefore assumes that all constant in the PDE system in
known and given.

b. Related Work
There have been a lot of work studying the population of squirrels in Britain.

Many of the work in the field, unsurprisingly, are by well-known ecologists. Middle-
ton [8] have argued that the decline of red squirrels is not induced by the introduction
of its competitors, while Elton [2] and others have argues for the opposite side.

On the more mathematical side, many have also made use of systems of differ-
ential equations to study the spread of animal populations. For example, Murray
et al [10] have modeled the spread of rabies among foxes using a simple logistic
law. Murray [11] have also studied the spatial dispersal of species using differential
equations.

The main mathematical foundations for this work is the Turing Systems. The
Turing System is first introduced by Alan Turing [18] in 1990 studying patterns
found in nature. Turing examined a system where two diffusable substances interact
with each other and tried to identify the diffusion pattern. He found that such a
system eventually lead to a spatially periodic pattern, even if the initial distribution
is random or uniform. In honor of his amazing discovery, the system is named
“Turing System” and the pattern “Turing pattern”. Two decades after Turing’s
discovery, Barrio [1] have also studied Turing Systems and pointed out that they
are “suitable to model a wide variety of phenomenons found in nature”. Logan [7]
has presented a generic form for Turing Systems:

ut = αuxx + f(u, v)
vt = βvxx + g(u, v)

This system describes a reaction-diffusion process on the spatial domain 0 < x < L.
More recently, many have used this system of equations for applications in the
life sciences. Okubo et al [14] mirrored the two squirrel populations as the two
“diffusable substances”, and investigated the diffusion pattern. Zincenko et al [19]
have used Turing systems to investigate the human population density diffusing
between urban and rural areas. Karig et al [4] have used the system to study the
population of bacterial under more relaxed mathematical conditions.

Problem formulation
In this section, we formulate the population density problem as a system of

partial differential equations.
Following the notation of Okubo et al [14], let S1(R, T ), S2(R, T ) be the popula-

tion densities at time T and spatial location R of grey and red squirrels respectively.
With the assumption that the two squirrel species compete for the same resources,
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we know that S1 and S2 satisfy the following systems of PDEs:
∂S1
∂T

= D1∇2S1 + a1S1(1 − b1S1 − c1S2)
∂S2
∂T

= D2∇2S2 + a2S2(1 − b2S2 − c2S1)
. (1)

where Di are diffusion coefficients, ai are net birth rates, 1/bi are carrying capac-
ities, ci are competition coefficients, and i = 1 is for grey and 2 for red. ∇2 is
the Laplace operator. For simplicity, we limit ourselves to the case with only one
spatial dimension, x, in the spatial domain 0 < x < L. Then, we can rewrite
Equation (1)into 

∂S1
∂T

= D1
∂2S1
∂x2 + a1S1(1 − b1S1 − c1S2)

∂S2
∂T

= D2
∂2S2
∂x2 + a2S2(1 − b2S2 − c2S1)

. (2)

In the Okubo paper, they assumed that all parameters are non-negative and that
the grey squirrels out-compete the red ones. Hence

b2 > c1, c2 > b1 (3)

In addition, the system has zero-flux boundary conditions because we assume squir-
rels in Britain are going to stay in Britain with none coming in or leaving

∂Si

∂x
= 0, x = 0, L

for i = 1,2. The goal is to investigate the general behavior of the above system,
and the possibility of traveling waves of invasion of grey squirrels that drive out the
reds.

Analysis and Results
We divide this section into three parts. In part a, we study the the steady states
of the system and their corresponding stability; in part b, we conduct phase plane
analysis and argue the existence of traveling wave solutions; in part c, we analytically
deduce the traveling wave solutions of the Turing System in a special case where
the system of equations is reducible to Fisher’s Equation.

a. Steady states and stability
Firstly, we wish to find the steady states of the system. Assume that the system
has constant solution S1 = e1, S2 = e2. With this solution, Equation (1) becomesa1e1(1 − b1e1 − c1e2) = 0

a2e2(1 − b2e2 − c2e1) = 0
. (4)

Since all the coefficients are non-zero, we can derive that there are 3 steady states:
(0, 0), (1, 0) and (0,1). These correspond to three scenarios in a given environment:
no squirrels, only grey squirrels with density 1 and only red squirrels with density
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1, respectively.

Now consider that there are some small perturbations U , V near our equilibria, i.e.S1 = e1 + U(x,t)
S2 = e2 + V (x,t)

(5)

Let f(s1, s2) = a1e1(1 − b1e1 − c1e2)
g(s1, s2) = a2e2(1 − b2e2 − c2e1)

(6)

We can then rewrite Equation (2) asUt = D1Uxx + f(e1 + U, e2 + V )
Vt = D2Vxx + g(e1 + U, e2 + V )

. (7)

subject to boundary conditions

Ux(0,t) = Ux(L,t) = Vx(0,t) = Vx(L,t) = 0 (8)

To linearize Equation (7), consider the Taylor expansions of f and gf(e1 + U, e2 + V ) = f(e1, e2) + fS1(e1, e2)U + fS2(e1, e2)V + fS1S1(e1, e2)U2 + ...

g(e1 + U, e2 + V ) = g(e1, e2) + gS1(e1, e2)U + gS2(e1, e2)V + gS1S1(e1, e2)U2 + ...
.

(9)
Since U and V are assumed to be small perturbations, we can drop the non-linear
terms. Also note that f(e1, e2) = g(e1, e2) = 0. Hence, the linearized form of
Equation (7) is Ut = D1Uxx + fS1(e1, e2)U + fS2(e1, e2)V

Vt = D2Vxx + gS1(e1, e2)U + gS2(e1, e2)V
. (10)

which can be rewritten in the matrix form
−→
Wt = D

−−→
Wxx + J

−→
W (11)

where

−→
W =

(
U
V

)
, D =

(
D1 0
0 D2

)
, J =

(
fS1(e1, e2) fS2(e1, e2)
gS1(e1, e2) gS2(e1, e2)

)
.

The solutions to Equation (11), a standard diffusion equation with a source term,
take the form

−→
W = −→

C eλntcos( n

L
), −→

C =
(

c1n

c2n

)
, n = 0,1,2,...

Plug this solution into Equation (11), we obtain

(λnI + Dn2π2

L2 − J)−→W = 0 (12)
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Note that
J =

(
a1 − 2a1b1e1 − a1c1e2 −a1c1e1

−a2c2e2 a2 − 2a2b2e2 − a2c2e1

)
(13)

In order for Equation (12) to have non-trivial solutions, we need

det(λnI + Dn2π2

L2 − J) = 0, (14)

thus eigenvalues λn can be solved. In addition, the stability of each equilibrium
point can be concluded by studying the signs of the eigenvalues. Our results have
shown that (0, 0) is an unstable node, (1, 0) is a stable node, and (0,1) is a saddle
point. The knowledge of the stability of each steady state can be useful in the phase
plane analysis in the following section, and can facilitate our understanding of the
dynamics of the system.

b. Phase plane analysis

Figure 1: Phase plane

Figure (1) is the phase plane of the system inferred from the node type of each
equilibrium point, where S1 and S2 are the two axes. The phase plane suggests the
existence of a solution from (0,1) to (1,0), and that when diffusion is included, there
is a possible traveling wave solution connecting these two points [12]. This particular
solution corresponds to the event that invading grey squirrels out-competes red ones
to extinction. The following section will expand on the calculations of the traveling
wave solution.
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c. Traveling wave solutions
In this section, we consider the traveling wave solutions to the simplified 1-dimensional
Turing System in Equation (2). Following Okubo’s work, we attempt to re-write
this system in a non-dimensional form with dimensionless time t and dimensionless
spatial coordinate x:

t = a1 ∗ T

x = X(a1/D1)0.5

Then, the dimensionless population densities at space x and time t is θi = θi(x, t), i =
1,2:

θ1 = b1 ∗ S1

θ2 = b2 ∗ S2

Also define constants: 
κ = D2/D1

α = a2/a1

γ1 = c1/b2, γ2 = c2/b1

(15)

where κ represents the ratio of diffusion of red squirrel to grey squirrel and α is the
ratio of growth rates. Using these constants and non-dimensional variables, we can
write down the non-dimensional Turing System:

∂θ1
∂t

= ∂2θ1
∂x2 + θ1(1 − θ1 − γ1θ2)

∂θ2
∂t

= κ∂2θ2
∂x2 + αθ2(1 − θ2 − γ2θ1)

(16)

And the constraints assumed in formula ( 3) becomes:

γ1 < 1, γ2 > 1 (17)

From the analysis of the phase plane and stationary points, we already know that
the system (16) along with constraints (17) has three steady states: unstable state
at (0, 0), stable state at (1, 0), and saddle point at (0, 1). The phase plane indicates
that a travelling wave solution will start from point (0, 1) to (1, 0). In the remainder
of this section we will derive this solution that corresponds to the grey squirrels (θ1)
drives the red (θ2) to near extinction.

We aim to find traveling wave solutions to Equation (16) where θ1, θ2 are wave
solutions to constant shape travelling to the +x direction with velocity V :θi = θi(z), i = 1, 2

z = x − V t, V > 0
(18)

Solutions of this form is also proposed by Logan [7]. So now our job is to determine
the value of the wave velocity V . Using this solution form, we simplify system (16)
to: −V dθ1

dz
= d2θ1

dz2 + θ1(1 − θ1 − γ1θ2)
−V dθ2

dz
= κd2θ2

dz2 + αθ2(1 − θ2 − γ2θ1)
(19)
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Based on the phase plane, the boundary conditions for (1, 0) and (0, 1) are:θ1 = 1, θ2 = 0, z = −∞
θ1 = 0, θ2 = 1, , z = +∞

(20)

Okubo et al [14] claims in their work that Equation (19) with boundaries (20) cannot
by solved analytically, only numerically. However, we can still analyze the system
under the specific case that

κ = α = 1, γ1 + γ2 = 2

We can add the two Equations in (19) to get:

− V
dθ

dz
= d2θ

dz2 + θ(1 − θ), θ = (θ1 + θ2) (21)

Similarly, the boundary conditions from (20) becomes:

θ = 1, z = ±∞ (22)

Since θ = θ(z) is a function of z, a monotonic variable is terms of x, t, and θ still
takes on the same boundary value at both ends, θ has to be a constant for all values
of z:

θ = θ1 + θ2 = 1, ∀z

We can in turn use this relationship between θ1 and θ2 to solve the system (19).
First, to solve the first equation in system (19), we plug in θ2 = 1 − θ1, and get:

− V
dθ1

dz
= d2θ1

dz2 + θ1(1γ1)(1 − θ1) (23)

Note that this is in fact in the form of Fisher’s Equation. In Fisher’s original
paper [3], he pointed out that the wave speed has to be greater than some threshold
for wave solutions to exist. In a general form of Fisher’s equation

∂u

∂t
− D

∂2u

∂x2 = ru(1 − u)

the minimum wave speed is
c ≥ 2

√
rD

Therefore, returning to Equation (23), the solution to wave speed V must satisfy:

V ≥ V
(1)

min = 2
√

1 − γ1, γ1 < 1 (24)

Similarly, we can solve the second equation in system (19) by plugging in θ1 = 1 = θ2,
and get:

− V
dθ2

dz
= d2θ2

dz2 + θ2(γ2 − 1)(1 − θ2) (25)

By the same reasoning process, we know the wave speed must also satisfy

V ≥ V
(2)

min = 2
√

γ2 − 1, γ2 > 1 (26)
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Since we have assumed the special case of γ1 + γ2 = 1, so 1 − γ1 = γ2 − 1. This
means that the two minimum wave speeds we derived in Equation (23) and (25) are
exactly the same. Finally, changing the expressions back to their dimensional form
using the definitions from (15), we have:

Vmin = 2
√

(1 − c1

b2
)(D1a1) (27)

In conclusion, solution V to system 19 under the specific case κ = α = 1, γ1 +γ2 = 2
is V ≥ Vmin. The wave travels from (θ1, θ2) = (0, 1) to (1, 0) at some speed that’s
bounded from below.

Interpretation
The analysis in the last section indicates that since the grey squirrels are

assumed to have competitive advantage, they would drive the red squirrels to ex-
tinction in competition. This is consistent with the results in the numerical sim-
ulation by Okubo et al [14]. Although the analysis in the previous section made
the simplifying assumption of limiting the spatial variable to one dimension, the
two-dimensional diffusion-competition problem yields very similar results.

In the beginning, before the North American grey squirrels were introduced
into Britain, there is only the indigenous red squirrels. This corresponds to the
saddle point (S1, S2) = (0, 1), which is itself an equilibrium point and will stay the
same without outside interference. When the grey squirrels were introduced, the
necessary forces were applied to move the system equilibrium. At the start, the state
moved from (0, 1) to (ϵ, 1− ϵ) for some small number of introduced grey squirrels, ϵ.
From the phase plane analysis and traveling wave solution analysis, we know there
is a traveling wave solution from (0, 1) to (1, 0). Therefore, the state will traverse
from (ϵ, 1 − ϵ) to (1, 0) with a minimum speed of Vmin = 2

√
(1 − c1

b2
)(D1a1). When

the solution arrives at point (1, 0), this corresponds to the point where there is only
grey squirrels and red squirrels have been driven to extinction.

Furthermore, Since (1, 0) is a stable equilibrium, it is hard to return to the
initial point (0, 1) just by giving the system some perturbation and introducing
some red squirrel populations. It seems like the North American squirrels are there
to stay, calling Britain their new home.

Finally, we note that there is something particularly interesting about the re-
sults above; it indicates that a species competing and overcoming another is quali-
tatively very similar to one species spreading without the other. When there is no
competition, a species will spread out like a wave and eventually reach a constant
radial speed [17]. The only difference may be that the diffusion wave speed is slower
with the presence of a competitor.

Extensions
In this section, we make provide contexts for some extended applications of

the Turing System, which is the core of our analysis in this paper. Our goal here is
to familiarize the readers with the applications of the Turing System.
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The Turing System can be written in a generalized form

∂S1
∂T

= D1∇2S1 + f1(S1, S2, ..., Sk)
∂S2
∂T

= D2∇2S2 + f2(S1, S2, ..., Sk)
...

∂Sk

∂T
= Dk∇2Sk + fk(S1, S2, ..., Sk)

. (28)

and has wide applications in a variety of natural phenomenons where two or more
diffusible substances interact. In Turing’s classic paper [18] that first introduced
the Turing System, he proposed a model that described how the interaction of two
homogeneously distributed substances can produce ordered stable structures despite
initial chaos, and hypothesized that the resulting wavelike patterns are the chemical
basis of morphogenesis [6].

Besides competing species in an environment, another interesting application
of the Turing system is zebra-fish skin pigmentation. The stripes of zebra-fish are
composed of a mosaic-like arrangement of 3 types of pigment cells: melanophores,
xanthophores, and iridophores [5]. Studies have shown that the generation of the
stripe pattern is dependent on the interactions between pigment cells, instead of
a prepattern mechanism [13]. The system can be characterized by the following
system of equations containing 3 factors:

∂u

∂t
= F (u, v, w) − cuu + Du∇2u

∂v

∂t
= G(u, v, w) − cvv + Dv∇2v

∂w

∂t
= H(u, v, w) − cww + Dw∇2w

F (u, v, w) =


0 : c1v + c2w + c3 < 0

c1v + c2w + c3 < 0 : 0 < c1v + c2w + c3 < U

U : U < c1v + c2w + c3

G(u, v, w) =


0 : c4v + c5w + c6 < 0

c4v + c5w + c6 < 0 : 0 < c1v + c2w + c3 < V

V : V < c4v + c5w + c6

H(u, v, w) =


0 : c7v + c8w + c9 < 0

c7v + c8w + c9 < 0 : 0 < c7v + c8w + c9 < W

W : W < c7v + c8w + c9

where u, v represent the density of melanophores and xanthophores, respectively,
and w is a long range factor. The equations cannot be solved analytically, but can
be numerically simulated.

9 af 11



Yuanhao Wang
Zhiyuan Zhou

December 15, 2021
APMA 360

Conclusions
In this paper, we analyzed the use of Turing System in the problem of squirrel species
competition in Britain. Our main contribution is analyzing the problem posed
in Okubo et al’s [14] work in depth, corroborating their findings, and identifying
relevant related works in the usage of Turing Systems. We built on their work and
provided original insights on the solution of the PDE system. Our main finding
through the analysis indicates that the competitively advantageous grey squirrels
will drive out the red squirrels in a diffusion-competition environment. The modeling
result is corroborated by field studies of the squirrel populations [16, 9, 15].
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